Free Access
Aquat. Living Resour.
Volume 32, 2019
Article Number 16
Number of page(s) 9
Published online 15 July 2019
  • Alam MS, Islam MS. 2005. Population genetic structure of Catla catla(Hamilton) revealed by microsatellite DNA markers. Aquaculture 246: 151–160. [Google Scholar]
  • Brookes MI, Graneau YA, King P, Rose OC, Thomas CD, Mallet JLB. 1997. Genetic analysis of founder bottlenecks in the rare British butterfly Plebejus argus . Conserv Biol 11: 648–661. [Google Scholar]
  • Chen WM, Cheng QQ. 2013. Development of thirty-five novel polymorphic microsatellite markers in Larimichthys polyactis (Perciformes: Sciaenidae) and cross-species amplification in closely related species, Pseudosciaena crocea . Biochem Syst Ecol 47: 111–115. [Google Scholar]
  • Cornuet JM, Luikart G. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001–2014. [PubMed] [Google Scholar]
  • Coulon A, Guillot G, Cosson J. 2006. Genetic structure is influenced by lansdcape features. Empirical evidence from a roe deer population. Mol Ecol 15: 1669–1679. [CrossRef] [PubMed] [Google Scholar]
  • Curley BG, Gillings MR. 2009. Population connectivity in the temperate damselfish Parma microlepis: analysis of genetic structure across multiple spatial scales. Mar Biol 156(3): 381–393. [Google Scholar]
  • DeWoody JA, Avise JC. 2000. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56: 461–473. [Google Scholar]
  • Excoffier L, Laval G, Schneider S. 2005. Arlequin version 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1: 47–50. [CrossRef] [Google Scholar]
  • FAO. 2012. Accessed 10 Oct 2012. [Google Scholar]
  • FishBase. 2012. Accessed 20 Dec 2012. [Google Scholar]
  • Goldstein DB, Schlotterer C. 1999. Microsatellites: evolution and applications. Oxford University Press, Oxford. [Google Scholar]
  • Han ZQ, Lin LS, Shui BN, Gao TX. 2009. Genetic diversity of small yellow croaker Larimichthys polyactis revealed by AFLP markers. Afr J Agr Res 4(7): 605–610. [Google Scholar]
  • Herwerden L, Blair D, Agatsuma T. 1999. Genetic diversity in parthenogenetic triploid Paragonimus westermani . Int J Parasi 29(9): 1477–1482. [CrossRef] [Google Scholar]
  • Hewitt GM. 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907–913. [CrossRef] [PubMed] [Google Scholar]
  • Ikeda I. 1964. Studies on the fisheries biology of the Yellow Croaker in the East China and the Yellow Seas. Seikai Reg Fish Res Lab 31: 1–81. [Google Scholar]
  • Jin X, Zhao X, Meng T, Cui Y. 2005. Biology resources and habitat environment in Yellow and Bohai Seas. Science Press, Beijing, (in Chinese). [Google Scholar]
  • Jin X, Tang Q. 1996. Changes in fish species diversity and dominant species composition in the Yellow Sea. Fish Res 26: 337–352. [Google Scholar]
  • Kim JK, Min GS, Yoon M, Kim Y, Choi JH, Oh TY, Ni Y. 2012. Genetic structure of Larimichthys polyactis (Pisces: Sciaenidae) in the Yellow and East China Seas inferred from microsatellite and mitochondrial DNA analyses. Animal Cells Syst 16(4): 313–320. [CrossRef] [Google Scholar]
  • Kim S, Jung S, Zhang CI. 1997. The effect of seasonal anomalies of seawater temperature and salinity on the fluctuation in yields of small yellow croaker, Larimichthys polyactis, in the Yellow Sea. Fish Oceanogr 6: 1–9. [Google Scholar]
  • Kim JK, Kim YH, Kim MJ, Park JY. 2010. Genetic diversity, relationships and demographic history of the small yellow croaker, Larimichthys polyactis (Pisces: Sciaenidae) from Korea and China inferred mitochondrial control region sequence data. Anim Cells Syst 14(1): 45–51. [CrossRef] [Google Scholar]
  • Li DY, Kang DH, Yin QQ, Sun XW, Liang LQ. 2007b. Microsatellite DNA marker analysis of genetic diversity in wild common carp (Cyprinus carpio L.) populations. J Genet Genom 34(11): 984–993. [CrossRef] [Google Scholar]
  • Li J, Feng F, Yue GH. 2006. Twelve novel polymorphic microsatellites in a marine fish species, yellow croaker Larimichthys polyactis . Mol Ecol Notes 6: 188–190. [Google Scholar]
  • Li JS, Yan LP, Li HY, Yang Li. 2007a. On the relationship between quantity distribution of small yellow croaker (Larimichthys polyactis Bleeker) and zooplankton in Southern Yellow Sea and the Northern East China Sea in summer and autumn. Marine Fisheries 29(1): 31–37. [Google Scholar]
  • Li NS, Zhao SL, Wasiliev B. 2000. Geology of marginal sea in the Northwest Pacific. Heilongjiang Education Press, Harbin, (in Chinese). [Google Scholar]
  • Lin XZ. 1964. The study on biological measurement of population of small yellow croaker. In: The Proceedings of Marine Fisheries Resources. Agriculture Press, Beijing, (in Chinese). [Google Scholar]
  • Lin LS, Ying YP, Han ZQ, Xiao YS, Gao TX. 2009. AFLP analysis on genetic diversity and population structure of small yellow croaker Larimichthys polyactis . Afr J Biotechnol 8(12): 2700–2706. [Google Scholar]
  • Liu X, Wu J, Han G. 1990. Investigation and division of the Yellow Sea and Bohai Sea Fishery Resources. Ocean Press, Beijing, (in Chinese). [Google Scholar]
  • Liu XS. 1990. The Fisheries Resources Investigation and Division of the Yellow and Bohai Seas. Ocean Press, Beijing, (in Chinese). [Google Scholar]
  • Liu ZJ, Cordes JF. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238: 1–137. [Google Scholar]
  • Luikart G, Cornuet JM. 1998. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12: 228–237. [Google Scholar]
  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7: 639–655. [CrossRef] [PubMed] [Google Scholar]
  • Meng ZN, Zhuang ZM, Jin XS, Tang QS, Su YQ. 2003. Genetic diversity in small yellow croaker (Larimichthys polyactis) by RAPD analysis. Biodivers Sci 11(3): 197–203. [Google Scholar]
  • Morandin C, Loveridge AJ, Segelbacher G. 2014. Gene flow and immigration: genetic diversity and population structure of lions (Panthera leo) in Hwange National Park, Zimbabwe. Conserv Genetics 15(3): 697–706. [CrossRef] [Google Scholar]
  • Moritz C. 1994. Defining “evolutionary significant units” for conservation. Trends Ecol Evol 9: 373–375. [CrossRef] [PubMed] [Google Scholar]
  • Muths D, Grewe P, Jean C. 2009. Genetic population structure of the Swordfish (Xiphias gladius) in the southwest Indian Ocean: sex-biased differentiation, congruency between markers and its incidence in a way of stock assessment. Fish Res 97: 263–269. [Google Scholar]
  • Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590. [PubMed] [Google Scholar]
  • Paetkau D, Slade R, Burden M, Estoup A. 2004. Direct, real-time estimation of migration rate using assignment methods: a simulation-based exploration of accuracy and power. Mol Ecol 13: 55–65. [CrossRef] [PubMed] [Google Scholar]
  • Palumbi SR. 2003. Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13: S146–S158. [Google Scholar]
  • Peakall R, Smouse PE. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6: 288–295. [Google Scholar]
  • Peng B, Zhang Q, Zhao S, Le XL. 2010. Genetic diversity analysis of Larimichthys polyactis in coastal waters of China based on cytochrome B gene. Guangdong Agr Sci (China) 2: 131 –135. [Google Scholar]
  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A. 2004. GeneClass2: a software for genetic assignment and first-generation migrant detection. J Hered 95: 536–539. [CrossRef] [PubMed] [Google Scholar]
  • Piry S, Luikart G, Cornuet JM. 1999. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90: 502–503. [Google Scholar]
  • Rannala B, Mountain JL. 1997. Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci 94: 9197–9201. [Google Scholar]
  • Raymond M, Rousset F. 1995. Genepop (version-1.2) population genetics software for exact tests and ecumenicism. J Hered 86: 248–249. [Google Scholar]
  • Rice WR. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225. [CrossRef] [PubMed] [Google Scholar]
  • Shriver MD, Jin L, Chakraborty R, Boerwinkle I. 1993. VNTR allele frequency distributions under the stepwise mutation model − a computer simulation approach. Genetics 134: 983 –993. [PubMed] [Google Scholar]
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10): 2731 –2739. [CrossRef] [PubMed] [Google Scholar]
  • Thai BT, Burridge CP, Austin CM. 2007. Genetic diversity of common carp (Cyprinus carpio) in Vietnam using four microsatellite loci. Aquaculture 269: 74–186. [Google Scholar]
  • Valdes AM, Slatkin M, Freimer NB. 1993. Allele frequencies at microsatellite loci − the stepwise mutation model revisited. Genetics 133: 737–749. [PubMed] [Google Scholar]
  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in mirosatellite data. Mol Ecol Notes 4: 535–538. [Google Scholar]
  • Wang YG, Ma ZY, You HB. 1965. The preliminary study on migration and distribution of small yellow croaker. In: The Proceedings of Marine Fisheries Resources. Agriculture Press, Beijing, (in Chinese). [Google Scholar]
  • Wu R, Liu S, Zhuang Z, Jin XS, Su YQ, Tang QS. 2009. Population genetic structure of small yellow croaker based on cytochrome b sequences. Prog Nat Sci (China) 19: 924–930. [Google Scholar]
  • Wu R, Liu S, Zhuang Z. 2012. Population genetic structure and demographic history of small yellow croaker, Larimichthys polyactis (Bleeker, 1877), from coastal waters of China. Afr J Biotech 11: 12500–12509. [Google Scholar]
  • Xiao YS, Zhang Y, Gao TX, Yanagimoto T, Yabe M, Sakurai Y. 2009. Genetic diversity in the mtDNA control region and population structure in the small yellow croaker, Larimichthys polyactis . Environ Biol Fish 85: 303–314. [CrossRef] [Google Scholar]
  • Xu GP, Zhong XM, Ding YP, Liu PT, Tang JH, Xu P. 2005. The research on genetic diversity of Larimichthys polyactis population from the southern part of the Yellow Sea. Mar Sci (China) 29: 34–38. [Google Scholar]
  • Yan L, Hu F, Ling J, Li S. 2006. Study on age and growth of Larimichthys polyactis in the East China Sea. Ocean Univ China 36: 95–100. [Google Scholar]
  • Yan LP, Li JS, Shen DG, Yu LF, Ling LY. 2006. Variations in diet composition and feeding intensity of small yellow croaker Larimichthys polyactis Bleeker in the southern Yellow Sea and northern East China Sea. Marine Fisheries 28(2): 162–170. [Google Scholar]
  • Zeng LY, Cheng QQ, Chen XY. 2012. Microsatellite analysis reveals the population structure and migration patterns of Scomber japonicus (Scombridae) with continuous distribution in the East and South China Seas. Biochem Syst Ecol 42: 83–93. [Google Scholar]
  • Zhao CY, Chen YF, Hong GC. 1987. Fishery resources investigation in East China Sea. East China Normal University Publisher, Shanghai, (in Chinese). [Google Scholar]
  • Zheng WJ, Lai YH, You QY, Qin QH, Zhu SH. 2012. Genetic diversity of Larimichthys polyactis in Zhoushan based on mitochondrial DNA D-loop region sequences. Zool Res 33: 329–336. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.