Free Access
Issue
Aquat. Living Resour.
Volume 30, 2017
Article Number 31
Number of page(s) 13
DOI https://doi.org/10.1051/alr/2017031
Published online 18 August 2017
  • Ackman RG. WCOT (capillary) gas–liquid chromatography, in: R.J. Hamilton, J.B. Rossell (Eds.), Analysis of oils and fats, Elsevier, New York, 1986, pp. 137–206. [Google Scholar]
  • Ackman RG, Hooper SN, Ke PJ. 1971. The distribution of saturated and isoprenoid fatty acids in the lipids of three species of molluscs, Littorina littorea, Crassostrea virginica and Venus mercenaria. Comp Biochem Physiol 39B: 579–587. [Google Scholar]
  • Arnold AA, Genard B, Zito F, Tremblay R, Warschawski DE, Marcotte I. 2015. Identification of lipid and saccharide constituents of whole microalgal cells by 13C solid-state NMR. Biochim Biophys Acta 1848: 369–377. [CrossRef] [PubMed] [Google Scholar]
  • Barillé L, Prou J, Héral M, Bourgrier S. 1993. No influence of food quality, but ration-dependent retention efficiencies in the Japanese oyster Crossostrea gigas. J Exp Mar Biol Ecol 171: 91–106. [CrossRef] [Google Scholar]
  • Barillé L, Prou J, Héral M, Razet D. 1997. Effects of high natural seston concentrations on the feeding, selection, and absorption of the oyster Crassostrea gigas (Thunberg). J Exp Mar Biol Ecol 212: 149–172. [CrossRef] [Google Scholar]
  • Brito AC, Benyoucef I, Jesus B, Brotas V, Gernez P, Mendes CF, Launeau P, Dias MP, Barillé L. 2013. Seasonality of microphytobenthos revealed by remote-sensing in a South European estuary. Cont Shelf Res 66: 83–91. [CrossRef] [Google Scholar]
  • Budge SM, Parrish CC. 1998. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Org Geochem 29: 1547–1559. [CrossRef] [Google Scholar]
  • Cabrol J, Winkler G, Tremblay R. 2015. Physiological condition and differential feeding behavior in the cryptic species complex Eurytemora affinis in the St Lawrence estuary. J Plankton Res 37: 372–387. [CrossRef] [Google Scholar]
  • Caroppo C. 2000. The contribution of picophytoplankton to community structure in a Mediterranean brackish environment. J Plankton Res 22(2): 381–397. [CrossRef] [Google Scholar]
  • Coen LD, Brumbaugh RD, Bushek D, Grizzle R, Luckenbach MW, Posey MH, Powers SP, Tolley SG. 2007. Ecosystem services related to oyster restoration. Mar Ecol Prog Ser 341: 303–307. [CrossRef] [Google Scholar]
  • Cognie B, Barillé L, Rincé Y. 2001. Selective feeding of the oyster Crassostrea gigas fed on a natural microphytobenthos assemblage. Estuaries 24(1): 126–131. [CrossRef] [Google Scholar]
  • Comeau LA. 2013. Suspended versus bottom oyster culture in eastern Canada: comparing stocking densities and clearance rates. Aquaculture 410–411: 57–65. [CrossRef] [Google Scholar]
  • Comeau LA, Filgueira R, Guyondet T, Sonier R. 2015. The impact of invasive tunicates on the demand for phytoplankton in longline mussel farms. Aquaculture 441: 95–105. [CrossRef] [Google Scholar]
  • Cranford PJ, Hargrave BT, Doucette LI. 2009. Benthic organic enrichment from suspended mussel (Mytilus edulis) culture in Prince Edward Island, Canada. Aquaculture 292: 189–196. [CrossRef] [Google Scholar]
  • Cresson P, Ruitton S, Harmelin-Vivien M. 2016. Feeding strategies of co-occuring suspension feeders in an oligotrophic environment. Food Webs 6: 19–28. [CrossRef] [Google Scholar]
  • Da Costa F, Robert R, Quéré C, Wikfors GH, Soudant P. 2015. Essential fatty acid assimilation and synthesis in larvae of the bivalve Crassostres gigas. Lipids 50: 503–511. [CrossRef] [PubMed] [Google Scholar]
  • Dalsgaard J, John MS, Kattner G, Müller-Navarra D, Hagen W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46: 229–352. [Google Scholar]
  • Filgueira R, Guyondet T, Comeau LA, Grant J. 2014a. Physiological indices as indicators of ecosystem status in shellfish aquaculture sites. Ecol Indic 39: 134–143. [CrossRef] [Google Scholar]
  • Filgueira R, Guyondet T, Comeau LA, Grant J. 2014b. A fully-spatial ecosystem-DEB model of oyster (Crassostrea virginica) carrying capacity in the Richibucto Estuary, Eastern Canada. J Mar Syst 136: 42–54. [CrossRef] [Google Scholar]
  • Filgueira R, Guyondet T, Comeau LA, Tremblay R. 2016. Bivalve aquaculture–environment interactions in the context of climate change. Glob Change Biol. doi:10.1111/gcb.13346. [Google Scholar]
  • Fry B. 2007. Stable isotope ecology, 1st edition, Springer, New York, NY, 308 p. [Google Scholar]
  • Gaillard B, Meziane T, Tremblay R, Archambault P, Layton KKS, Martel AL, Olivier F. 2015, Dietary tracers in Bathyarca glacialis from contrasting trophic regions in the Canadian Arctic. Mar Ecol Prog Ser 536: 175–186. [CrossRef] [Google Scholar]
  • Gaillard B, Meziane T, Tremblay R, Archambault P, Blicher ME, Chauvaud L, Rysgard S, Olivier F. 2017. Food resources of the bivalve Astarte elliptica in a sub-Arctic fjord: a multi-biomarker approach. Mar Ecol Prog Ser 567: 139–156 [CrossRef] [Google Scholar]
  • Galloway AWE, Winder M. 2015. Partitioning the relative importance of phylogeny and environmental conditions on phytoplankton fatty acids. PLos ONE 10: e0130053. [CrossRef] [PubMed] [Google Scholar]
  • Grangeré K, Lefebvre S, Bacher C, Cugier P, Ménesguen A. 2010. Modelling the spatial heterogeneity of ecological processes in an intertidal estuarine bay: dynamic interactions between bivalves and phytoplankton. Mar Ecol Prog Ser 415: 141–158. [CrossRef] [Google Scholar]
  • Guyondet T, Sonier R, Comeau LA. 2013. Spatially explicit seston depletion index to optimize shellfish culture. Aquac Environ Interact 4: 175–186. [CrossRef] [Google Scholar]
  • Kach DJ, Ward JE. 2008. The role of marine aggregates in the ingestion of picoplankton-size particles by suspension-feeding molluscs. Mar Biol 153: 797–805. [CrossRef] [Google Scholar]
  • Kelly JR, Scheibling RE. 2012. Fatty acids as dietary tracers in benthic food webs. Mar Ecol Prog Ser 446: 1–22. [CrossRef] [Google Scholar]
  • Kirkham AP, Lepère C, Jardillier LE, Not F, Bouman H, Mead A, Scanlan DJ. 2013. A global perspective on marine photosynthetic picoeukaryotes community structure. ISME J 7: 922–936. [CrossRef] [PubMed] [Google Scholar]
  • Lepage G, Roy CC. 1984. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res 25(12): 1391–1396. [PubMed] [Google Scholar]
  • Li B, Ward JE, Holohan BA. 2008. Transparent exopolymer particles (TEP) from marine suspension feeders enhance particle aggregation. Mar Ecol Prog Ser 357: 67–77. [CrossRef] [Google Scholar]
  • Loosanoff VL. 1958. Some aspects of behavior of oysters at different temperatures. Biol Bull 114(1): 57–70. [CrossRef] [Google Scholar]
  • Lowe AT, Galloway AWE, Yeung JS, Dethier MN, Duggins DO. 2014. Broad sampling and diverse biomarkers allow characterization of nearshore organic matter. Oikos 123: 1341–1354. [CrossRef] [Google Scholar]
  • Møhlenberg F, Riisgård HU. 1978. Efficiency of particle retention in 13 species of suspension feeding bivalves. Ophelia 17: 239–246. [CrossRef] [Google Scholar]
  • Monroig O, Tocher DR, Navarro JC. 2013. Biosynthesis of polyunsaturated fatty acids in marine invertebrates: recent advances in molecular mechanisms. Mar Drugs 11: 3998–4018. [CrossRef] [PubMed] [Google Scholar]
  • Moon-van der Staay SY, van der Staay GWM, Guillou L, Vaulot D, Claustre H, Medlin LK. 2000. Abundance and diversity of Prumnesiophytes in the picoplankton community from the equatorial Pacific Ocean inferred from 18S rDNA sequences. Limnol Oceanogr 45: 98–109. [CrossRef] [Google Scholar]
  • Moynihan M, Barbier P, Olivier F, Toupoint N, Meziane T. 2016. Spatial and temporal dynamics of nano- and pico-size particulate organic matter (POM) in a coastal megatidal system. Limnol Oceanogr. doi:10.1002/lno.10276. [Google Scholar]
  • Mugg Pietros J, Rice MA. 2003. The impacts of aquacultured oysters, Crassostrea virginica (Gmelin, 1791) on water column nitrogen and sedimentation: results of a mesocosm study. Aquaculture 220: 407–422. [CrossRef] [Google Scholar]
  • Newell RIE. 2004. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalves molluscs: a review. J Shellfish Res 23: 51–61. [Google Scholar]
  • Pales Espinosa E, Perrigault M, Ward JE, Shumway SE, Allam B. 2009. Lectins associated with the feeding organs of the oyster Crassostrea virginica can mediate particle selection. Biol Bull 217: 130–141. [CrossRef] [PubMed] [Google Scholar]
  • Paradis M, Ackman RG. 1975. Occurrence and chemical structure of nonmethylene-interrupted dienioc fatty acids in American oysters, Crasssostrea virginica. Lipids 10: 12–16. [CrossRef] [PubMed] [Google Scholar]
  • Paradis M, Ackman RG. 1977. Potential for employing the distribution of anomalous nonmethylene-interrupted dienioc fatty acids in several marine invertebrates as part of food web studies. Lipids 12: 170–176. [CrossRef] [PubMed] [Google Scholar]
  • Parrish CC. 2013. Lipids in marine ecosystems. Int Sch Res Not Oceanogr 2013: 604045. [Google Scholar]
  • Parrish CC. Determination of total lipid, lipid classes, and fatty acids in aquatic samples. in: M.T. Arts, B.C. Wainman (Eds.), Lipids in fresh-water ecosystems, Springer-Verlag, New York, USA, 1999, pp. 5–20. [Google Scholar]
  • Parrish CC, McKenzie CH, MacDonald BA, Hatfield EA. 1995. Seasonal studies of seston lipids in relation to microplankton species composition and scallop growth in South Broad Cove, Newfoundland. Mar Ecol Prog Ser 129: 151–164. [CrossRef] [Google Scholar]
  • Péquin B, Mohit V, Poisot T, Tremblay R, Lovejoy C. 2017. Wind drives microbial eukaryote communities in a temperate closed lagoon. Aquat Mircrob Ecol 78: 187–200. [CrossRef] [Google Scholar]
  • Perez V, Olivier F, Tremblay R, Neumier U, Thébault J, Chauvaud L, Meziane T. 2013. Trophic resources of the bivalve, Venus verrucosa, in the Chausey archipelago (Normandy, France) determined by stable isotopes and fatty acids. Aquat Living Resour 26: 229–239. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pernet F, Malet N, Pastoureaud A, Vaquer A, Quéré C, Dubroca L. 2012. Marine diatoms sustain growth of bivalves in a Mediterranean lagoon. J Sea Res 68: 20–32. [CrossRef] [Google Scholar]
  • Pernet F, Tremblay R, Comeau L, Guderley H. 2007. Temperature adaptation in two bivalve species from different thermal habitats: energetics and remodeling of membrane lipids. J Exp Biol 210: 2999–3014. [CrossRef] [PubMed] [Google Scholar]
  • Peterson BJ, Fry B. 1987. Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18: 293–320. [CrossRef] [Google Scholar]
  • Pogoda B, Buck BH, Saborowski R, Hagen W. 2013. Biochemical and elemental composition of the offshore-cultivated oysters Ostrea edulis and Crassostrea gigas. Aquaculture 400-401: 53–60. [CrossRef] [Google Scholar]
  • Post DM. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718. [Google Scholar]
  • Prins TC, Smaal AC, Dame RF. 1998. A review of the feedbacks between bivalve grazing and ecosystem processes. Aquat Ecol 31: 349–359. [Google Scholar]
  • Prins TC, Smaal AC, Pouwer AJ. 1991. Selective ingestion of phytoplankton by the bivalves Mytilus edulis L. and Cerastoderma edule (L.). Hydrobiol Bull 25: 93–100. [CrossRef] [Google Scholar]
  • R Core Team. R: a language and environmental for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2013. http://www.R-project.org/. [Google Scholar]
  • Rabinovich AL, Ripatti PO. 1991. On the conformational, physical properties and functions of polyunsaturated acyl chains. Biochim Biophys Acta 1085(1): 53–62. [CrossRef] [PubMed] [Google Scholar]
  • Richardson TL, Jackson GA. 2007. Small phytoplankton and carbon export from the surface ocean. Science 315: 838–840. [CrossRef] [PubMed] [Google Scholar]
  • Riisgård HU. 1988. Efficiency of particle retention and filtration-rate in 6 species of northeast American bivalves. Mar Ecol Prog Ser 45: 217–223. [CrossRef] [Google Scholar]
  • Rosa M, Ward JE, Shumway SE, Wikfors GH, Pales-Espinosa E, Allam B. 2013. Effects of particle surface properties on feeding selectivity in the eastern oyster Crassostrea virginica and the blue mussel Mytilus edulis. J Exp Mar Biol Ecol 446: 320–327. [CrossRef] [Google Scholar]
  • Seychelles LH, Audet C, Tremblay R, Fournier R, Pernet F. 2009. Essential fatty acid enrichment of cultured rotifers (Brachionus plicatilis, Müller) using frozen-concentrated microalgae. Aquac Nutr 15: 731–439. [Google Scholar]
  • Shumway SE, Cucci TL, Newell RC, Yentsch CM. 1985. Particle selection, ingestion, and absorption in filter-feeding bivalves. J Exp Mar Biol Ecol 91: 77–92. [CrossRef] [Google Scholar]
  • Sonier R, Filgueira R, Guyondet T, Tremblay R, Olivier F, Meziane T, Starr M, LeBlanc AR, Comeau LA. 2016. Picophytoplankton contribution to Mytilus edulis growth in an intensive culture environment. Mar Biol 163: 73. [CrossRef] [Google Scholar]
  • Søreide JE, Falk-Petersen S, Hegseth EN, Hop H, Carroll ML, Hobson KA, Blachoviak-Samolyk K. 2008. Seasonal feeding strategies of Calanus in the high-Arctic Svalbard region. Deep-Sea Res II 55: 2225–2244. [CrossRef] [Google Scholar]
  • Spilmont N, Seuront L, Meziane T, Welsh DT. 2011. There's more to the picture than meets the eye: sampling microphytobenthos in a heterogeneous environment. Estuar Coast Shelf Sci 95(4): 470–476. [CrossRef] [Google Scholar]
  • Stanley D, Howard R. 1998. The biology of prostaglandins and related eicosanoids in invertebrates: cellular, organismal and ecological actions. Am Zool 38: 369–381. [CrossRef] [Google Scholar]
  • Stolte W, Mccollin T, Noordeloos AAM, Riegman R. 1994. Effects of nitrogen source on the size distribution within marine phytoplankton populations. J Exp Mar Biol Ecol 184: 83–97. [CrossRef] [Google Scholar]
  • Strohmeier T, Strand Ø, Alunno-Bruscia M, Duinker A, Cranford PJ. 2012. Variability in particle retention efficiency by the mussel Mytilus edulis. J Exp Mar Biol Ecol 412: 96–102. [CrossRef] [Google Scholar]
  • Thomsen HA, Buck KR. 1998. Nanoflagellates of the central California waters: taxonomy, biogeography and abundance of primitive, green flagellates (Pedinophyceae, Prasinophyceae). Deep Sea Res II 45: 1687–1707. [CrossRef] [Google Scholar]
  • Trottet A, Roy S, Tamigneaux E, Lovejoy C, Tremblay R. 2008. Impact of suspended mussels (Mytilus edulis L.) on plankton communities in a Magdalen Islands lagoon (Québec, Canada): a mesocosm approach. J Exp Mar Biol Ecol 365: 103–115. [CrossRef] [Google Scholar]
  • Underwood GJC, Kromkamp J. 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Adv Ecol Res 29: 93–153. [CrossRef] [Google Scholar]
  • Waite AM, Safi KA, Hall JA, Nodder SD. 2000. Mass sedimentation of picoplankton embedded in organic aggregates. Limnol Oceangr 45: 87–97. [CrossRef] [Google Scholar]
  • Ward JE, Shumway SE. 2004. Separating the grain from the chaff: particle selection in suspension- and deposit-feeding bivalves. J Exp Mar Biol Ecol 300: 83–130. [CrossRef] [Google Scholar]
  • Zhukova NV. 1991. The pathway of the biosynthesis of non-methylene-interrupted dienoic fatty acids in molluscs. Comp Biochem Physiol 100B(4): 801–804. [Google Scholar]
  • Zhukova NV, Svetashev VI. 1986. Non-methylene-interrupted dienoic fatty acids in molluscs from the sea of Japan. Comp Biochem Physiol 83B(3): 643–646. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.