Free Access
Issue
Aquat. Living Resour.
Volume 30, 2017
Article Number 39
Number of page(s) 10
DOI https://doi.org/10.1051/alr/2017038
Published online 01 November 2017
  • Baddeley A, Rubak E, Turner R. (2015) Spatial point patterns: methodology and applications with R. Chapman and Hall/CRC Press, London [Google Scholar]
  • Bastardie F, Nielsen JR, Ulrich C, Egekvist J, Degel H. (2010) Detailed mapping of fishing effort and landings by coupling fishing logbooks with satellite-recorded vessel geo-location. Fish Res 106: 41–53 [CrossRef] [Google Scholar]
  • Baudry JP, Raftery AE, Celeux G, Lo K, Gottardo R. (2010) Combining mixture components for clustering. J Comput Graph Stat 19: 332–353 [CrossRef] [Google Scholar]
  • Boulcott P, Millar CP, Fryer RJ. (2014) Impact of scallop dredging on benthic epifauna in a mixed-substrate habitat. ICES J Mar Sci 71: 834–844 [CrossRef] [Google Scholar]
  • Breen P, Vanstaen K, Clark RWE. (2015) Mapping inshore fishing activity using aerial, land, and vessel-based sighting information. ICES J Mar Sci 72: 467–479 [CrossRef] [Google Scholar]
  • Buchin K, Arseneau T, Sijben S, Willems EP. Detecting movement patterns using Brownian bridges, in: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, (2012), pp. 119–128 [Google Scholar]
  • Calenge C. (2006) The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol Model 197: 516–519 [CrossRef] [Google Scholar]
  • Calenge C, Dray S, Royer-Carenzi M. (2009) The concept of animals’ trajectories from a data analysis perspective. Ecol Inform 4: 34–41 [CrossRef] [Google Scholar]
  • Campbell MS, Stehfest KM, Votier SC, Hall-Spencer JM. (2014) Mapping fisheries for marine spatial planning: gear-specific vessel monitoring system (VMS), marine conservation and offshore renewable energy. Mar Policy 45: 293–300 [CrossRef] [Google Scholar]
  • Demšar U, Buchin K, Cagnacci F, Safi K, Speckmann B, de Weghe NV, Weiskopf D, Weibel R. (2015) Analysis and visualisation of movement: an interdisciplinary review. Mov Ecol 3: 5 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Demšar U, Buchin K, van Loon EE, Shamoun-Baranes J. (2014) Stacked space-time densities: a geovisualisation approach to explore dynamics of space use over time. GeoInform 19: 85–115 [Google Scholar]
  • Downs JA. Time-geographic density estimation for moving point objects, Springer Berlin Heidelberg, Berlin, Heidelberg, (2010), 16–26 [Google Scholar]
  • Dunn DC, Maxwell SM, Boustany AM, Halpin PN. (2016) Dynamic ocean management increases the efficiency and efficacy of fisheries management. Proceedings of the National Academy of Sciences 113: 668–673 [CrossRef] [Google Scholar]
  • EC. (2002) Council Regulation EC No. 2371/2002 of 20 December 2002 on the conservation and sustainable exploitation of fisheries resources under the Common Fisheries Policy. Off J: 59–80 [Google Scholar]
  • Eigaard OR, Bastardie F, Breen M, Dinesen GE, Hintzen NT, Laffargue P, Mortensen LO, Nielsen JR, Nilsson HC, O’Neill FG, Polet H, Reid DG, Sala A, Sköld M, Smith C, S∅rensen TK, Tully O, Zengin M, Rijnsdorp AD. (2016) Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions. ICES J Mar Sci 73: i27–i43 [CrossRef] [Google Scholar]
  • Enguehard RA, Hoeber O, Devillers R. (2013) Interactive exploration of movement data: a case study of geovisual analytics for fishing vessel analysis. Inf Vis 12: 65–84 [CrossRef] [Google Scholar]
  • Fraley C, Raftery AE. (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97: 611–631 [CrossRef] [MathSciNet] [Google Scholar]
  • Fraley C, Raftery AE, Murphy TB, Scrucca L (2012). Mclust version 4 for R: normal mixture modeling for model-based clustering, classification, and density estimation, Technical report 597, Department of Statistics, University of Washington [Google Scholar]
  • Gerritsen H, Lordan C. (2011) Integrating vessel monitoring systems (VMS) data with daily catch data from logbooks to explore the spatial distribution of catch andeffort at high resolution. ICES J. Mar Sci 68: 245–252 [CrossRef] [Google Scholar]
  • Gloaguen P, Mahévas S, Rivot E, Woillez M, Guitton J, Vermard Y, Etienne M.P. (2015) An autoregressive model to describe fishing vessel movement and activity. Environmetrics 26: 17–28 [CrossRef] [Google Scholar]
  • Gloaguen P, Woillez M, Mahévas S, Vermard Y, Rivot, E. (2016) Is speed through water a better proxy for fishing activities than speed over ground? Aquat Living Resour 29: 210 [CrossRef] [EDP Sciences] [Google Scholar]
  • Gourmelon F, Le Guyader D, Fontenelle G. (2014) A dynamic GIS as an efficient tool for integrated coastal zone management. ISPRS Int J Geo-Inf 3: 391–407 [CrossRef] [Google Scholar]
  • Hengl T, van Loon E, Shamoun-Baranes J, Bouten W. Geostatistical analysis of GPS trajectory data: space-time densities, in: Proceedings of the 8th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, World Academic Press, Shanghai, China, 2008, pp. 17–24 [Google Scholar]
  • Hijmans RJ, van Etten J, Mattiuzzi M, Sumner M, Greenberg JA, Lamigueiro OP, Bevan A, Racine EB, Shortridge A. (2015) Raster: Geographic data analysis and modeling. [Google Scholar]
  • Hintzen NT, Bastardie F, Beare D, Piet GJ, Ulrich C, Deporte N, Egekvist J, Degel H. (2012) VMS tools: Open-source software for the processing, analysis and visualisation of fisheries logbook and VMS data. Fish Res 115–116: 31–43 [CrossRef] [Google Scholar]
  • Hinz H, Murray LG, Lambert GI, Hiddink JG, Kaiser MJ. (2013) Confidentiality over fishing effort data threatens science and management progress. Fish Fish 14: 110–117 [CrossRef] [Google Scholar]
  • H∅ye GK, Eriksen T, Meland BJ, Narheim BT. (2008) Space-based AIS for global maritime traffic monitoring. Acta Astronaut 62: 240–245 [CrossRef] [Google Scholar]
  • Jennings S, Lee J. (2012) Defining fishing grounds with vessel monitoring system data. ICES J. Mar Sci 69: 51–63 [CrossRef] [Google Scholar]
  • Joo R, Bertrand S, Tam J, Fablet R. (2013) Hidden Markov models: the best models for forager movements? PLoS ONE 8: e71246 [CrossRef] [PubMed] [Google Scholar]
  • Kafas A, McLay A, Chimienti M, Scott BE, Davies I, Gubbins M. (2017) ScotMap: participatory mapping of inshore fishing activity to inform marine spatial planning in Scotland. Mar Policy 79: 8–18 [CrossRef] [Google Scholar]
  • Kuhn M. (2008) Building predictive models in R using the caret package. J Stat Softw 1: 2008 [Google Scholar]
  • Lee J, South AB, Jennings S. (2010) Developing reliable, repeatable, and accessible methods to provide high-resolution estimates of fishing-effort distributions from vessel monitoring system (VMS) data. ICES J Mar Sci 67: 1260–1271 [CrossRef] [Google Scholar]
  • Long JA, Nelson TA. (2012) Time geography and wildlife home range delineation. J Wildl Manag 76: 407–413 [CrossRef] [Google Scholar]
  • McCauley DJ, Woods P, Sullivan B, Bergman B, Jablonicky C, Roan A, Hirshfield M, Boerder K, Worm B. (2016) Ending hide and seek at sea. Science 351: 1148–1150 [CrossRef] [PubMed] [Google Scholar]
  • Mills CM, Townsend SE, Jennings S, Eastwood PD, Houghton CA. (2007) Estimating high resolution trawl fishing effort from satellite-based vessel monitoring system data. ICES J Mar Sci 64: 248–255 [CrossRef] [Google Scholar]
  • Murtagh F, Legendre P. (2014) Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J Classification 31: 274–295 [CrossRef] [Google Scholar]
  • Natale F, Gibin M, Alessandrini A, Vespe M, Paulrud A. (2015) Mapping fishing effort through AIS data. PLOS ONE 10: e0130746 [CrossRef] [PubMed] [Google Scholar]
  • Piet GJ, Quirijns FJ, Robinson L, Greenstreet SPR. (2007) Potential pressure indicators for fishing, and their data requirements. ICES J Mar Sci 64: 110–121 [CrossRef] [Google Scholar]
  • Powell RA. (2000) Animal home ranges and territories and home range estimators, in: Pearl MC, Boitani L, Fuller TK (Eds.), Research techniques in animal ecology. Columbia University Press. Controversies and Consequences, 2nd edition, pp. 65–110 [Google Scholar]
  • R Core Team (2016). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria [Google Scholar]
  • Robards M, Silber G, Adams J, Arroyo J, Lorenzini D, Schwehr K, Amos, J, (2016) Conservation science and policy applications of the marine vessel Automatic Identification System (AIS)—a review. Bull Mar Sci 92: 75–103 [CrossRef] [Google Scholar]
  • Russo T, D’Andrea L, Parisi A, Cataudella S. (2014). VMSbase: an R-Package for VMS and logbook data management and analysis in fisheries ecology. PLoS ONE 9: e100195 [CrossRef] [PubMed] [Google Scholar]
  • Russo T, D’Andrea L, Parisi A, Martinelli M, Belardinelli A, Boccoli F, Cignini, I, Tordoni M, Cataudella S. (2016) Assessing the fishing footprint using data integrated from different tracking devices: Issues and opportunities. Ecol Indic 69: 818–827 [CrossRef] [Google Scholar]
  • Russo T, Parisi A, Cataudella S. (2011) New insights in interpolating fishing tracks from VMS data for different métiers. Fish Res 108: 184–194 [CrossRef] [Google Scholar]
  • Russo T, Parisi A, Cataudella S. (2013) Spatial indicators of fishing pressure: Preliminary analyses and possible developments. Ecol Indicators 26: 141–153 [CrossRef] [Google Scholar]
  • Schwarz G, (1978) Estimating the Dimension of a Model. The Ann Stat 6: 461–464 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Shelmerdine RL. (2015) Teasing out the detail: How our understanding of marine AIS data can better inform industries, developments, and planning. Mar Policy 54: 17–25 [CrossRef] [Google Scholar]
  • Silverman B. (1986) Density estimation for statistics and data analysis, in: Cox D, Hinkley D, Reid N, Rubin D, Silverman B. (Eds.), Monographs on Statistics and Applied Probability. Chapman & Hall, London, p. 155 [Google Scholar]
  • de Souza EN, Boerder K, Matwin S, Worm B. (2016) Improving fishing pattern detection from satellite AIS using data mining and machine learning. PLOS ONE 11: e0158248 [CrossRef] [PubMed] [Google Scholar]
  • Sumner, MD, (2015) Trip: Tools for the Analysis of Animal Track Data. [Google Scholar]
  • Tidd AN, Vermard Y, Marchal P, Pinnegar J, Blanchard JL, Milner-Gulland EJ. (2014) Fishing for space: fine-scale multi-sector maritime activities influence fisher location choice. PLoS ONE 10:e0116335 [CrossRef] [Google Scholar]
  • VanDerWal J, Falconi L, Januchowski S, Shoo L (2014). Storlie C. SDMTools: Species distribution modelling tools: tools for processing data associated with species distribution modelling exercises. R package version 1.1-221 [Google Scholar]
  • Vermard Y, Rivot E, Mahévas S, Marchal P, Gascuel D. (2010) Identifying fishing trip behaviour and estimating fishing effort from VMS data using Bayesian Hidden Markov Models. Ecol Model 221: 1757–1769 [CrossRef] [Google Scholar]
  • Vespe M, Gibin M, Alessandrini A, Natale F, Mazzarella F, Osio GC. (2016) Mapping EU fishing activities using ship tracking data. J Maps 0: 1–6 [Google Scholar]
  • Ward JH. (1963) Hierarchical grouping to optimize an objective function. J Am stat assoc 58: 236–244 [CrossRef] [Google Scholar]
  • Warren DL, Glor RE, Turelli M. (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evol 62: 2868–2883 [CrossRef] [PubMed] [Google Scholar]
  • Watts ME, Ball IR, Stewart RS, Klein CJ, Wilson K, Steinback C, Lourival R, Kircher L, Possingham HP. (2009) Marxan with zones: software for optimal conservation based land- and sea-use zoning. Environ Model Softw 24: 1513–1521 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.