Free Access
Issue
Aquat. Living Resour.
Volume 30, 2017
Article Number 29
Number of page(s) 13
DOI https://doi.org/10.1051/alr/2017023
Published online 11 August 2017
  • Anderson JA, Epifanio CE. 2009. Induction of metamorphosis in the Asian shore crab Hemigrapsus sanguineus: characterization of the cue associated with biofilm from adult habitat. J Exp Mar Biol Ecol 382: 34–39. [CrossRef]
  • Anderson OR. 2016. Marine and estuarine natural microbial biofilms: ecological and biogeochemical dimensions. Aims Microbiol 2: 304–331. [CrossRef]
  • Arzul I, Nicolas JL, Davison AJ, Renault T. 2001. French scallops: a new host for ostreid herpesvirus-1. Virology 290: 342–349. [CrossRef] [PubMed]
  • Asmani K, Petton B, Le Grand J, Mounier J, Robert R, Nicolas JL. 2016. Establishment of microbiota in larval culture of Pacific oyster, Crassostrea gigas. Orig Aquacult 464: 434–444. [CrossRef]
  • Attramadal KJK, Minniti G, Oie G, et al. 2016. Microbial maturation of intake water at different carrying capacities affects microbial control in rearing tanks for marine fish larvae. Aquaculture 457: 68–72. [CrossRef]
  • Attramadal KJK, Thi My Hanh T, Bakke I, Skjermo J, Olsen Y, Vadstein O. 2014. RAS and microbial maturation as tools for K-selection of microbial communities improve survival in cod larvae. Aquaculture 432: 483–490. [CrossRef]
  • Bakke I, Coward E, Andersen T, Vadstein O. 2015. Selection in the host structures the microbiota associated with developing cod larvae (Gadus morhua). Environ Microbiol 17: 3914–3924. [CrossRef] [PubMed]
  • Ben Kheder R, Quere C, Moal J, Robert R. 2010a. Effect of nutrition on Crassostrea gigas larval development and the evolution of physiological indices. Part A: quantitative and qualitative diet effects. Aquaculture 305: 165–173. [CrossRef]
  • Ben Kheder R, Quere C, Moal J, Robert R. 2010b. Effect of nutrition onCrassostrea gigas larval development and the evolution of physiological indices Part B: effects of temporary food deprivation. Aquaculture 308: 174–182. [CrossRef]
  • Bernbom N, Ng YY, Kjelleberg S, Harder T, Gram L. 2011. Marine bacteria from Danish coastal waters show antifouling activity against the marine fouling bacterium Pseudoalteromonas sp Strain S91 and Zoospores of the green alga Ulva australis independent of bacteriocidal activity. Appl Environ Microbiol 77: 8557–8567. [CrossRef] [PubMed]
  • Blancheton JP, Attramadal KJK, Michaud L, d'Orbcastel ER, Vadstein O. 2013. Insight into bacterial population in aquaculture systems and its implication. Aquacult Eng 53: 30–39. [CrossRef]
  • Boardman GD, Starbuck SM, Hudgins DB, Li X, Kuhn DD. 2004. Toxicity of ammonia to three marine fish and three marine invertebrates. Environ Toxicol 19: 134–142. [CrossRef] [PubMed]
  • Cai J, Zhao J, Wang Z, Zou D, Sun L. 2008. Lysis of vibrios by Bdellovibrio-and-like organisms (BALOs) isolated from marine environment. J Food Saf 28: 220–235. [CrossRef]
  • Cai WL, De La Fuente L, Arias CR. 2013. Biofilm formation by the fish pathogen Flavobacterium columnare: development and parameters affecting surface attachment. Appl Environ Microbiol 79: 5633–5642. [CrossRef] [PubMed]
  • Caporaso JG, Kuczynski J, Stombaugh J, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335–336. [CrossRef] [PubMed]
  • da Costa F, Robert R, Quere C, Wikfors GH, Soudant P. 2015. Essential fatty acid assimilation and synthesis in larvae of the bivalve Crassostrea gigas. Lipids 50: 503–511. [CrossRef] [PubMed]
  • Dobretsov S. 2009. Inhibition and induction of marine biofouling by biofilms. In: Flemming HC, Murthy PS, Venkatesan R, Cooksey K, eds. Marine and industrial biofouling. Berlin: Springer, pp. 293–313. [CrossRef]
  • Foesel BU, Gieseke A, Schwermer C, et al. 2008. Nitrosomonas Nm143-like ammonia oxidizers and 5itrospira marina-like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm. Fems Microbiol Ecol 63: 192–204. [CrossRef] [PubMed]
  • Furusawa G, Yoshikawa T, Yasuda A, Sakata T. 2003. Algicidal activity and gilding motility of Saprospira sp SS98-5. Can J Microbiol 49: 92–100. [CrossRef] [PubMed]
  • Ganesan AM, Alfaro AC, Brooks JD, Higgins CM. 2010. The role of bacterial biofilms and exudates on the settlement of mussel (Perna canaliculus) larvae. Aquaculture 306: 388–392. [CrossRef]
  • Gao X-Y, Xu Y, Liu Y, Liu Z-P. 2012. Bacterial diversity, community structure and function associated with biofilm development in a biological aerated filter in a recirculating marine aquaculture system. Mar Biodivers 42: 1–11. [CrossRef]
  • Gatune WC, Vanreusel A, Ruwa R, Bossier P, De Troch M. 2014. Fatty acid profiling reveals a trophic link between mangrove leaf litter biofilms and the post-larvae of giant tiger shrimp Penaeus monodon. Aquac Environ Interact 6: 1–10. [CrossRef]
  • Golberg K, Pavlov V, Marks RS, Kushmaro A. 2013. Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. Biofouling 29: 669–682. [CrossRef] [EDP Sciences]
  • Gonzalez-Araya R, Lebrun L, Quere C, Robert R. 2012. The selection of an ideal diet for Ostrea edulis (L.) broodstock conditioning (part B). Aquaculture 362: 55–66. [CrossRef]
  • Gonzalez-Gil G, Sougrat R, Behzad AR, Lens PNL, Saikaly PE. 2015. Microbial community composition and ultrastructure of granules from a full-scale anammox reactor. Microb Ecol 70: 118–131. [CrossRef] [PubMed]
  • Hadfield MG. 2011. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. In: Carlson CA, Giovannoni SJ, eds, Ann Rev Mar Sci 3: 453. [CrossRef]
  • Herrera M, Rodiles A, Sanchez B, Lopez JM, de La Roca E. 2016. Physiological stress responses to captivity in early developmental stages of the wedge sole Dicologoglossa cuneata (Moreau). Aquac Res 47: 732–740. [CrossRef]
  • Lagos L, Herrera M, Sanchez-Lazo C, Martinez-Pita I. 2015. Effect of larval stocking density on growth, survival and whole body cortisol of the Mediterranean mussel Mytilus galloprovincialis (Lamarck, 1819) larvae reared under laboratory conditions. Aquac Res 46: 1648–1656. [CrossRef]
  • Leonard N, Blancheton JP, Guiraud JP. 2000. Populations of heterotrophic bacteria in an experimental recirculating aquaculture system. Aquacult Eng 22: 109–120. [CrossRef] [MathSciNet]
  • Lewin RA. 1997. Saprospira grandis: a flexibacterium that can catch bacterial prey by “ixotrophy”. Microb Ecol 34: 232–263. [CrossRef] [PubMed]
  • Li Y-F, Guo X-P, Yang J-L, et al. 2014. Effects of bacterial biofilms on settlement of plantigrades of the mussel Mytilus coruscus. Aquaculture 433: 434–441. [CrossRef]
  • Lu Y, Slater F, Bello-Mendoza R, Batstone DJ. 2013. Shearing of biofilms enables selective layer based microbial sampling and analysis. Biotechnol Bioeng 110: 2600–2605. [CrossRef] [PubMed]
  • Martins CIM, Pistrin MG, Ende SSW, Eding EH, Verreth JAJ. 2009. The accumulation of substances in Recirculating Aquaculture Systems (RAS) affects embryonic and larval development in common carp Cyprinus carpio. Aquaculture 291: 65–73. [CrossRef]
  • Miranda LN, Hutchison K, Grossman AR, Brawley SH. 2013. Diversity and abundance of the bacterial community of the red macroalga Porphyra umbilicalis: did bacterial farmers produce macroalgae? PLOS ONE 8: e58269. [CrossRef]
  • Moya J, Huilinir C, Peredo K, Aspe E, Roeckel M. 2012. Modeling of simultaneous denitrification – anaerobic digestion organic matter aerobic oxidation and nitrification in an anoxicanaerobicaerobic compact filter reactor. J Biotechnol 160: 176–188. [CrossRef] [PubMed]
  • Perez V, Olivier F, Tremblay R, et al. 2013. Trophic resources of the bivalve, Venus verrucosa, in the Chausey archipelago (Normandy, France) determined by stable isotopes and fatty acids. Aquat Living Resour 26: 229–239. [CrossRef] [EDP Sciences]
  • Petton B, Pernet F, Robert R, Boudry P. 2013. Temperature influence on pathogen transmission and subsequent mortalities in juvenile Pacific oyster Crassostrea gigas. Aquac Environ Interact 3: 257–273. [CrossRef]
  • Raulf FF, Fabricius K, Uthicke S, de Beer D, Abed RMM, Ramette A. 2015. Changes in microbial communities in coastal sediments along natural CO2 gradients at a volcanic vent in Papua New Guinea. Environ Microbiol 17: 3678–3691. [CrossRef] [PubMed]
  • Rico-Villa B, Pouvreau S, Robert R. 2009. Influence of food density and temperature on ingestion, growth and settlement of Pacific oyster larvae, Crassostrea gigas. Aquaculture 287: 395–401. [CrossRef]
  • Rico-Villa B, Woerther P, Mingant C, et al. 2008. A flow-through rearing system for ecophysiological studies of Pacific oyster Crassostrea gigas larvae. Aquaculture 282: 54–60. [CrossRef]
  • Robert R, Gerard A. 1999. Bivalve hatchery technology: the current situation for the Pacific oyster Crassostrea gigas and the scallop Pecten maximus in France. Aquat Living Resour 12: 121–130. [CrossRef] [EDP Sciences]
  • Romero J, Garcia-Varela M, Laclette JP, Espejo R. 2002. Bacterial 16S rRNA gene analysis revealed that bacteria related to Arcobacter spp. constitute an abundant and common component of the oyster microbiota (Tiostrea chilensis). Microb Ecol 44: 365–371. [CrossRef] [PubMed]
  • Ruan Y-J, Guo X-S, Ye Z-Y, Liu Y, Zhu S-M. 2015. Bacterial community analysis of different sections of a biofilter in a full-scale marine recirculating aquaculture system. N Am J Aquacult 77: 318–326. [CrossRef]
  • Rurangwa E, Verdegem MCJ. 2015. Microorganisms in recirculating aquaculture systems and their management. Rev Aquacult 7: 117–130. [CrossRef]
  • Salta M, Wharton JA, Blache Y, Stokes KR, Briand J-F. 2013. Marine biofilms on artificial surfaces: structure and dynamics. Environ Microbiol 5: 2879–2893.
  • Schneider O, Chabrillon-Popelka M, Smidt H, et al. 2007. HRT and nutrients affect bacterial communities grown on recirculation aquaculture system effluents. Fems Microbiol Ecol 60: 207–219. [CrossRef] [PubMed]
  • Seidel M, Beck M, Riedel T, et al. 2014. Biogeochemistry of dissolved organic matter in an anoxic intertidal creek bank. Geochim Cosmochim Acta 140: 418–434. [CrossRef]
  • Tebben J, Tapiolas DM, Motti CA, et al. 2011. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLoS ONE 6: e19082. [CrossRef]
  • Toupoint N, Mohit V, Linossier I, et al. 2012. Effect of biofilm age on settlement of Mytilus edulis. Biofouling 28: 985–1001. [CrossRef]
  • Usher KM, Kaksonen AH, Cole I, Marney D. 2014. Critical review: microbially influenced corrosion of buried carbon steel pipes. Int Biodeterior Biodegrad 93: 84–106. [CrossRef]
  • Viau VE, de Souza DM, Rodriguez EM, Wasielesky Jr W, Abreu PC, Ballester ELC. 2013. Biofilm feeding by postlarvae of the pink shrimp Farfantepenaeus brasiliensis Decapoda, Penaidae). Aquacult Res 44: 783–794. [CrossRef]
  • Wang C, Bao WY, Gu ZQ, et al. 2012. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to natural biofilms. Biofouling 28: 249–256. [CrossRef]
  • Xia Y, Kong Y, Nielsen PH. 2007. In situ detection of protein-hydrolysing microorganisms in activated sludge. Fems Microbiol Ecol 60: 156–165. [CrossRef] [PubMed]
  • Yamada T, Sekiguchi Y. 2009. Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi ‘Subphylum I’ with natural and biotechnological relevance. Microbes Environ 24: 205–216. [CrossRef] [PubMed]
  • Yamada T, Sekiguchi Y, Hanada S, et al. 2006. Anaerolinea thermolimosa sp nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., so. nov., novel filamentous anaerobes, and description of the new classes anaerolineae classis nov and Caldilineae classis nov in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56: 1331–1340. [CrossRef] [MathSciNet] [PubMed]
  • Yamada T, Sekiguchi Y, Imachi H, Kamagata Y, Ohashi A, Harada H. 2005. Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl Environ Microbiol 71: 7493–7503. [CrossRef] [PubMed]
  • Yamada T, Yamauchi T, Shiraishi K, et al. 2007. Characterization of filamentous bacteria, belonging to candidate phylum KSB3, that are associated with bulking in methanogenic granular sludges. ISME J 1: 246–255. [CrossRef] [PubMed]
  • Yang JL, Guo XP, Ding DW, et al. 2017. Interactions between natural biofilm, substratum surface wettability, and mussel plantigrade settlement. Sci China Earth Sci 60: 382–390. [CrossRef]
  • Yang JL, Li YF, Guo XP, et al. 2016a. The effect of carbon nanotubes and titanium dioxide incorporated in PDMS on biofilm community composition and subsequent mussel plantigrade settlement. Biofouling 32: 763–777. [CrossRef]
  • Yang JL, Li YF, Liang X, et al. 2016b. Silver nanoparticles impact biofilm communities and mussel settlement. Sci Rep 6: 37406. [CrossRef]
  • Yang JL, Shen PJ, Liang X, Li YF, Bao WY, Li JL. 2013. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. Biofouling 29: 247–259. [CrossRef] [EDP Sciences]
  • Zarasvand KA, Rai VR. 2014. Microorganisms: induction and inhibition of corrosion in metals. Int Biodeterior Biodegrad 87: 66–74. [CrossRef] [EDP Sciences]
  • Zhang G, Jiao Y, Lee D-J. 2015. Transformation of dissolved organic matters in landfill leachate bioelectrochemical system. Bioresour Technol 191: 350–354. [CrossRef] [PubMed]
  • Zhou Z, Qiao W, Xing C, et al. 2015. Characterization of dissolved organic matter in the anoxic–oxic-settling-anaerobic sludge reduction process. Chem Eng J 259: 357–363. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.