Issue
Aquat. Living Resour.
Volume 29, Number 2, April-June 2016
Symposium of the Association Française d'Halieutique (2015)
Article Number E201
Number of page(s) 7
DOI https://doi.org/10.1051/alr/2016021
Published online 07 October 2016
  • (For references mentioned as “this symposium” power point presentations are available at http://association-francaise-halieutique.fr/conferences/) [Google Scholar]
  • Abdou K., Halouani G., Hattab T., Romdhane M.S., Lasrma F. Ben Rais, Le Loc’h F. 2016, Exploring the potential effects of marine protected areas on the ecosystem structure of the Gulf of Gabes using the Ecospace model. Aquat. Living Res. 29, 202. [CrossRef] [EDP Sciences] [Google Scholar]
  • Avadí A., Fréon P., 2013, Life cycle assessment of fisheries: A review for fisheries scientists and managers. Fish. Res. 143, 21–38. [Google Scholar]
  • Barange M., Cheung W.W.L., Merino G., Perry R.I., 2010, Modelling the potential impacts of climate change and human activities on the sustainability of marine resources. Curr. Opin. Environ. Sustain. 2, 326–333. [Google Scholar]
  • Barton P.S., Lentini P.E., Alacs E., Bau S., Buckley Y.M., Burns E.L., Driscoll D.A., Guja L.K., Kujala H., Lahoz-Monfort J.J., Mortelliti A., Nathan R., Rowe R., Smith A.L., 2015, Guidelines for Using Movement Science to Inform Biodiversity Policy. Environ. Manage. 56, 791–801. [CrossRef] [PubMed] [Google Scholar]
  • Bertrand A., Chaigneau A., Peraltilla S., Ledesma J., Graco M., Monetti F., Chavez F.P., 2011, Oxygen: A Fundamental Property Regulating Pelagic Ecosystem Structure in the Coastal Southeastern Tropical Pacific. PLoS ONE 6, e29558. [Google Scholar]
  • Bez N., Walker E., Gaertner D., Rivoirard J., Gaspar P., 2011, Fishing activity of tuna purse seiners estimated from vessel monitoring system (VMS) data. Can. J. Fish. Aquat. Sci. 68, 1998–2010. [CrossRef] [Google Scholar]
  • Box G., Jenkins G.M., 1970, Time-Series Analysis: Forecasting and Control. Holden-Day. [Google Scholar]
  • Brandt A., 2009, The Cigarette Century: The Rise, Fall, and Deadly Persistence of the Product That Defined America. First Reprint edition, Basic Books. [Google Scholar]
  • Bunnefeld N., Hoshino E., Milner-Gulland E.J., 2011, Management strategy evaluation: a powerful tool for conservation? Trends Ecol. Evol. 26, 441–447. [Google Scholar]
  • Burnham K.P., Anderson D.R., 2002, Model Selection and Multimodel Inference: A Practical Information Theoretic Approach. Springer. [Google Scholar]
  • Cagnacci F., Boitani L., Powell R.A., Boyce M.S., 2010, Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philos. Trans. R. Soc. B Biol. Sci. 365, 2157–2162. [CrossRef] [Google Scholar]
  • Carter C.A., 2013, Constructing sustainability in EU fisheries: Re-drawing the boundary between science and politics? Environ. Sci. Policy 30, 26–35. [CrossRef] [Google Scholar]
  • Carter C., 2014, The transformation of Scottish fisheries: Sustainable interdependence from “net to plate”. Mar. Policy 44, 131–138. [Google Scholar]
  • Chave J., 2013, The problem of pattern and scale in ecology: what have we learned in 20 years? Ecol. Lett. 16, 4–16. [Google Scholar]
  • Cheung W.W., Lam V.W., Sarmiento J.L., Kearney K., Watson R.E.G., Zeller D., Pauly D., 2010, Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16, 24–35. [CrossRef] [Google Scholar]
  • Chevillot X., Pierre. M, Rigaud A., Drouineau H., Chaalali A., Sautour B., Lobry J., 2016. Abrupt shifts in the Gironde fish community: an indicator of ecological changes in an estuarine ecosystem. Mar. Ecol. Prog. Ser. 549, 137–151. [Google Scholar]
  • Chow C.C., Sarin R.K., 2002, Known, unknown, and unknowable uncertainties. Theory Decis. 52, 127–138. [Google Scholar]
  • Costanza R., Sklar F.H., 1985, Articulation, accuracy and effectiveness of mathematical models: a review of freshwater wetland applications. Ecol. Model. 27, 45–68. [CrossRef] [Google Scholar]
  • Cotters A J.R., Burt L., Paxton C.G.M., Fernandez C., Buckland S.T., Pan J.X., 2004, Are stock assessment methods too complicated? Fish Fish. 5, 235–254. [CrossRef] [Google Scholar]
  • de Pontual H., Ngo T.-T., Lalire M., Lazure P., Garren F., Drogou M., Woillez M., Fablet R., 2015, Understanding the spatial dynamics of European sea bass: new insights on seasonal migration patterns from electronic tagging off the coast of west Brittany. ICES Annual science conference, ICES CM 2013/O:05. [Google Scholar]
  • Doney S.C., Fabry V.J., Feely R.A., Kleypas J.A., 2009, Ocean acidification: the other CO2 problem. Mar. Sci. 1, 169–172. [CrossRef] [Google Scholar]
  • Evans M.R., Grimm V., Johst K., Knuuttila T., de Langhe R., Lessells C.M., Merz M., O’Malley M.A., Orzack S.H., Weisberg M., Wilkinson D.J., Wolkenhauer O., Benton T.G., 2013, Do simple models lead to generality in ecology? Trends Ecol. Evol. 28, 578−583. [CrossRef] [PubMed] [Google Scholar]
  • Faivre R., Iooss B., Mahévas S., Makowski D., Monod H., 2013, Analyse de sensibilité et exploration de modèles. Quae. [Google Scholar]
  • FAO 2014, State of the World Fisheries and Aquaculture 2014. S.l., Food & Agriculture Organization of the United Nations. [Google Scholar]
  • Faulkner H., Parker D., Green C., Beven K., 2007, Developing a translational discourse to communicate uncertainty in flood risk between science and the practitioner. AMBIO J. Hum. Environ. 36, 692–704. [CrossRef] [Google Scholar]
  • Feely R.A., Doney S.C., Cooley S.R., 2009, Ocean acidification: present conditions and future changes in a high-CO2 world. [Google Scholar]
  • Froese R., Walters C., Pauly D., Winker H., Weyl O.L.F., Demirel N., Tsikliras A.C., Holt S.J., in Press, A critique of the balanced harvesting approach to fishing. ICES J. Mar. Sci. doi:10.1093/icesjms/fsv122. [Google Scholar]
  • Fromentin J.-M., Bonhommeau S., Arrizabalaga H., Kell L.T., 2014, The spectre of uncertainty in management of exploited fish stocks: The illustrative case of Atlantic bluefin tuna. Mar. Policy 47, 8–14. [Google Scholar]
  • Fulton E.A., 2010, Approaches to end-to-end ecosystem models. J. Mar. Syst. 81, 171–183. [Google Scholar]
  • Fulton E.A., Fuller M., Smith A., Punt A.E., 2004, Ecological indicators of the ecosystem effects of fishing: final report. CSIRO. [Google Scholar]
  • Garcia S.M., 2003, The Ecosystem Approach to Fisheries: Issues, Terminology, Principles, Institutional Foundations, Implementation and Outlook. PAO. [Google Scholar]
  • Garcia S.M., Kolding J., Rice J., Rochet M.-J., Zhou S., Arimoto T., Beyer J.E., Borges L., Bundy A., Dunn D., Fulton E.A., Hall M., Heino M., Law R., Makino M., Rijnsdorp A.D., Simard F., Smith A.D.M., 2012, Reconsidering the Consequences of Selective Fisheries. Science 335, 1045–1047. [CrossRef] [PubMed] [Google Scholar]
  • Garcia S.M., Rice J., Charles A., 2015, Balanced harvesting in fisheries: a preliminary analysis of management implications. ICES J. Mar. Sci. J. Cons. Fsv156. [Google Scholar]
  • Gascuel D., Pauly D., 2009, EcoTroph: modelling marine ecosystem functioning and impact of fishing. Ecol. Model. 220, 2885–2898. [CrossRef] [Google Scholar]
  • Gascuel D., Bez N., Forest A., Guillotreau P., Laloë F., Lobry J., Mahévas S., Mesnil B., Rivot E., Rochette S., Trenkel V., 2011, A future for marine fisheries in Europe (Manifesto of the Association Française d’Halieumétrie). Fish. Res. 109, 1–6. [Google Scholar]
  • Gascuel D., Merino G., Döring R., Druon J.N., Goti L., Guénette S., Macher C., Soma K., Travers-Trolet M., Mackinson S., 2012, Towards the implementation of an integrated ecosystem fleet-based management of European fisheries. Mar. Policy 36, 1022−1032. [Google Scholar]
  • Gattuso J.-P., Magnan A., Billé R., Cheung W.W.L., Howes E.L., Joos F., Allemand D., Bopp L., Cooley S.R., Eakin C.M., Hoegh-Guldberg O., Kelly R.P., Pörtner H.-O., Rogers A.D., Baxter J.M., Laffoley D., Osborn D., Rankovic A., Rochette J., Sumaila U.R., Treyer S., Turley C., 2015, Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722. [Google Scholar]
  • Gloaguen P., Mahévas S., Rivot E., Woillez M., Guitton J., Vermard Y., Etienne M.-P., 2015, An autoregressive model to describe fishing vessel movement and activity. Environmetrics 26, 17–28. [Google Scholar]
  • Gloaguen P., Woillez M., Mahévas S., Vermard Y. Rivot E., 2016, Is speed through water a better proxy for fishing activities than speed over ground? Aquat. Living Res. 29, 210. [CrossRef] [EDP Sciences] [Google Scholar]
  • Guesnet V., Lassalle G., Chaalali A., Kearney K., Saint-Béat B., Karimi B., Grami B., Tecchio S., Niquil N., Lobry J., 2015, Incorporating food-web parameter uncertainty into Ecopath-derived ecological network indicators. Ecol. Model. 313, 29–40. [CrossRef] [Google Scholar]
  • Hâkanson L., 1995, Optimal size of predictive model. Ecol Model. 78, 195–204. [CrossRef] [Google Scholar]
  • Hall J.W., 2002, A contingency approach to choice. Civ. Eng. Syst. 19, 87–118. [CrossRef] [Google Scholar]
  • Hering D., Borja A., Carstensen J., Carvalho L., Elliott M., Feld C., Heiskanen A.-S., Johnson R., Moe J., Pont D., Solheim A., de Bund W., 2010, The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Sci. Total Env. 408, 4007–4019. [CrossRef] [PubMed] [Google Scholar]
  • Hoeting J.A., Madigan D., Raftery A.E., Volinsky C.T., 1999, Bayesian model averaging: a tutorial. Stat. Sci. 382–401. [Google Scholar]
  • Jonsen I.D., Myers R.A., Flemming J.M., 2003, Meta-analysis of animal movement using state-space models. Ecology 84, 3055−3063. [Google Scholar]
  • Jonsen I.D., Basson M., Bestley S., Bravington M.V., Patterson T.A., Pedersen M.W., Thomson R., Thygesen U.H., Wotherspoon S.J., 2013, State-space models for bio-loggers: A methodological road map. Deep Sea Res. Part II 88–89, 34–46. [CrossRef] [Google Scholar]
  • Joo R., Bertrand S., Tam J., Fablet R., 2013, Hidden Markov Models: The Best Models for Forager Movements? PLoS ONE 8, e71246. [Google Scholar]
  • Kleijnen J.P.C., 1987, Statistical tools for simulation practitioners. Marcel Dekker Inc. Pub, New York. [Google Scholar]
  • Kooijman S.A.L.M., 2000. Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press. [Google Scholar]
  • Latour B., 2012, Que la bataille se livre au moins à armes égales. In: Zaccai E., Gemenne F., Decroly J.M. (Eds) Controverses climatiques, sciences et politique. Presses de Sciences Po, pp. 1–7. [Google Scholar]
  • Lehuta S., Girardin R., Mahévas S., Travers-Trolet M., Vermard V., 2016, Reconciling complex models and fisheries advice: Practical examples and leads. Aquat. Living Res. 29, 208. [CrossRef] [EDP Sciences] [Google Scholar]
  • Levin S.A., 1992, The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture. Ecology 73, 1943–1967. [Google Scholar]
  • Lotze H.K., Lenihan H.S., Bourque B.J., Bradbury R.H., Cooke R.G., Kay M.C., Kidwell S.M., Kirby M.X., Peterson C.H., Jackson J.B., 2006, Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809. [CrossRef] [PubMed] [Google Scholar]
  • Marandel F., Lorance P., Trenkel V.M., 2016, A Bayesian state-space model to estimate population biomass with catch and limited survey data: application to the thornback ray (Raja clavata) in the Bay of Biscay. Aquat. Living Res. 29, 209. [CrossRef] [EDP Sciences] [Google Scholar]
  • Maris V., 2014, Nature à vendre. Quae Versailles. [Google Scholar]
  • Millennium Ecosystem Assessment, 2005, Ecosystems and human well-being. Island Press Washington, DC. [Google Scholar]
  • Mullon C., Fréon P., Cury P., Shannon L., Roy C., 2009, A minimal model of the variability of marine ecosystems. Fish Fish. 10, 115−131. [CrossRef] [Google Scholar]
  • Nams V.O., 2014, Combining animal movements and behavioural data to detect behavioural states. Ecol. Lett. 17, 1228–1237. [PubMed] [Google Scholar]
  • Nathan R., Getz W.M., Revilla E., Holyoak M., Kadmon R., Saltz D., Smouse P.E., 2008, A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. 105, 19052–19059. [CrossRef] [Google Scholar]
  • Nollet L.M., De Gelder L.S., 2000, Handbook of water analysis. CRC Press. [Google Scholar]
  • O’Hagan T., 2004, Dicing with the unknown. Significance 1, 132−133. [CrossRef] [Google Scholar]
  • Orr J.C., Fabry V.J., Aumont O., Bopp L., Doney S.C., Feely R.A., Gnanadesikan A., Gruber N., Ishida A., Joos F., Key R.M., Lindsay K., Maier-Reimer E., Matear R., Monfray P., Mouchet A., Najjar R.G., Plattner G.-K., Rodgers K.B., Sabine C.L., Sarmiento J.L., Schlitzer R., Slater R.D., Totterdell I.J., Weirig M.-F., Yamanaka Y., Yool A., 2005, Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686. [CrossRef] [PubMed] [Google Scholar]
  • Pahl-Wostl C., Arthington A., Bogardi J., Bunn S.E., Hoff H., Lebel L., Nikitina E., Palmer M., Poff L.N., Richards K., others, 2013, Environmental flows and water governance: managing sustainable water uses. Curr. Opin. Environ. Sustain. 5, 341–351. [Google Scholar]
  • Pauly D., Christensen V., Walters C., 2000, Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J. Mar. Sci. 57, 697–706. [CrossRef] [Google Scholar]
  • Piou C., Prévost E., 2012, A demo-genetic individual-based model for Atlantic salmon populations: Model structure, parameterization and sensitivity. Ecol. Model. 231, 37–52. [CrossRef] [Google Scholar]
  • Planque B., Lindstrøm U., Subbey S., 2014, Non-Deterministic Modelling of Food-Web Dynamics. PLoS ONE 9, e108243. [Google Scholar]
  • Politikos D.V., Huret M., Petitgas P., 2015, A coupled movement and bioenergetics model to explore the spawning migration of anchovy in the Bay of Biscay. Ecol. Model. 313, 212–222. [CrossRef] [Google Scholar]
  • Postel S., Richter B., 2003, Rivers for life: managing water for people and nature. Island Press. [Google Scholar]
  • Prato G., Gascuel D., Valls A., Francour P., 2014, Balancing complexity and feasibility in Mediterranean coastal food-web models: uncertainty and constraints. Mar. Ecol. Prog. Ser. 512, 71–88. [Google Scholar]
  • Proctor R., Schiebinger L., 2008, Agnotology: The Making and Unmaking of Ignorance. Stanford, Calif, Stanford University Press. [Google Scholar]
  • Rose K.A., Allen J.I., Artioli Y., Barange M., Blackford J., Carlotti F., Cropp R., Daewel U., Edwards K., Flynn K., others, 2010, End-to-end models for the analysis of marine ecosystems: challenges, issues, and next steps. Mar. Coast. Fish. 2, 115–130. [Google Scholar]
  • Rougier T., Drouineau H., Dumoulin N., Faure T., Deffuant G., Rochard E., Lambert P., 2014, The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution. Ecol. Model. 283, 31–44. [CrossRef] [Google Scholar]
  • Shin Y.-J., Cury P., 2004, Using an individual-based model of fish assemblages to study the response of size spectra to changes in fishing. Can. J. Fish. Aquat. Sci. 61, 414–431. [CrossRef] [Google Scholar]
  • Smith A.D.M., Sainsbury K.J., Stevens R.A., 1999, Implementing effective fisheries-management systems – management strategy evaluation and the Australian partnership approach. ICES J. Mar. Sci. J. Cons. 56, 967–979. [CrossRef] [Google Scholar]
  • Vermard Y., Rivot E., Mahévas S., Marchal P., Gascuel D., 2010, Identifying fishing trip behaviour and estimating fishing effort from VMS data using Bayesian Hidden Markov Models. Ecol. Model. 221, 1757–1769. [CrossRef] [Google Scholar]
  • Walker E., 2010, De la trajectoire des prédateurs à la cartographie de leurs proies: estimation spatiale de l’activité des senneurs et des thonidés dans l’Océan indien. Paris, ENMP. [Google Scholar]
  • Worm B., Barbier E.B., Beaumont N., Duffy J.E., Folke C., Halpern B.S., Jackson J.B., Lotze H.K., Micheli F., Palumbi S.R., others, 2006, Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790. [CrossRef] [PubMed] [Google Scholar]
  • Wortley L., Hero J.-M., Howes M., 2013, Evaluating ecological restoration success: a review of the literature. Restor. Ecol. 21, 537–543. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.