Issue
Aquat. Living Resour.
Volume 29, Number 2, April-June 2016
Symposium of the Association Française d'Halieutique (2015)
Article Number 208
Number of page(s) 20
DOI https://doi.org/10.1051/alr/2016022
Published online 30 September 2016
  • Ainsworth C.H., Morzaria-Luna H., Kaplan I.C., Levin P.S., Fulton E.A., Cudney-Bueno R., Turk-Boyer P., Torre J., Danemann G.D., Pfister T., 2012, Effective ecosystem-based management must encourage regulatory compliance: A Gulf of California case study. Mar. Policy 36, 1275–1283. [Google Scholar]
  • Albouy C., Mouillot D., Rocklin D., Culioli J.M., Loch F.L., 2010, Simulation of the combined effects of artisanal and recreational fisheries on a Mediterranean MPA ecosystem using a trophic model. Mar. Ecol. Prog. Ser. 412, 207–221. [Google Scholar]
  • Allen J.I., Fulton E.A., 2010, Top-down, bottom-up or middle-out? Avoiding extraneous detail and over-generality in marine ecosystem models. Prog. Oceanogr. 84, 129–133. [Google Scholar]
  • Allen J.I., Somerfield P.J., 2009, A multivariate approach to model skill assessment. J. Mar. Syst. 76, 83–94. [Google Scholar]
  • Apostolaki P., Milner-Gulland E.J., McAllister M.K., Kirkwood G.P., 2002, Modelling the effects of establishing a marine reserve for mobile fish species. Can. J. Fish. Aquat. Sci. 59, 405–415. [CrossRef] [Google Scholar]
  • Aumann C.A., 2007, A methodology for developing simulation models of complex systems. Ecol. Model. 202, 385–396. [CrossRef] [Google Scholar]
  • Barange M., Merino G., Blanchard J.L., Scholtens J., Harle J., Allison E.H., Allen J.I., Holt J., Jennings S., 2014, Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Change 4, 211–216. [CrossRef] [Google Scholar]
  • Bartelings H., Hamon K.G., Berkenhagen J., Buisman F.C., 2015, Bio-economic modelling for marine spatial planning application in North Sea shrimp and flatfish fisheries. Environ. Model. Softw. 74, 156–172. [Google Scholar]
  • Bastardie F., Nielsen J.R., Andersen B.S., Eigaard O.R., 2010, Effects of fishing effort allocation scenarios on energy efficiency and profitability: An individual-based model applied to Danish fisheries. Fish. Res. 106, 501–516. [Google Scholar]
  • Bastardie F., Nielsen J.R., Miethe T., 2013, DISPLACE: a dynamic, individual-based model for spatial fishing planning and effort displacement – integrating underlying fish population models. Can. J. Fish. Aquat. Sci. 71, 366–386. [CrossRef] [Google Scholar]
  • Bastardie F., Nielsen J.R., Eigaard O.R., Fock H.O., Jonsson P., Bartolino V., 2014, Competition for marine space: modelling the Baltic Sea fisheries and effort displacement under spatial restrictions. ICES J. Mar. Sci. J. Cons. fsu215. [Google Scholar]
  • Beecham J.A., Bruggeman J., Aldridge J., Mackinson S., 2015, An approach for coupling higher and lower levels in marine ecosystem models and its application to the North Sea. Geosci. Model. Dev. Discuss. 8, 5577–5618. [CrossRef] [Google Scholar]
  • Booshehrian M., Möller T., Peterman R.M., Munzner T., 2012, Vismon: Facilitating Analysis of Trade-Offs, Uncertainty, and Sensitivity In Fisheries Management Decision Making. Comput. Graph. Forum 31, 1235–1244. [Google Scholar]
  • Bourdaud P., Gascuel D., Bentorcha A., Brind’Amour A., 2016, New trophic indicators and target values for an ecosystem-based management of fisheries. Ecol. Indic. 61, 588–601. [Google Scholar]
  • Brander K.M., 2007, Global fish production and climate change. Proc. Natl. Acad. Sci. 104, 19709–19714. [CrossRef] [Google Scholar]
  • Brochier T., Ecoutin J.-M., Tito De Morais L., Kaplan D., Lae R., 2013, A multi-agent ecosystem model for studying changes in a tropical estuarine fish assemblage within a marine protected area. Aquat. Living Resour. 26, 147–158. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bulman C., Condie S.A., Furlani D., Cahill M., Klaer N., Goldsworthy S., Knuckey I., 2006, Trophic dynamics of the eastern shelf and slope of the South East Fishery: impacts of and on the fishery. Hobart: CSIRO Marine and Atmospheric Research. [Google Scholar]
  • Burnham K.P., Anderson D.R. (Eds.), 2004, Model Selection and Multimodel Inference. New York, NY, Springer New York. [Google Scholar]
  • Butterworth D.S., 2007, Why a management procedure approach? Some positives and negatives. ICES J. Mar. Sci. J. Cons. 64, 613−617. [Google Scholar]
  • Butterworth D.S., Johnston S.J., Brandão A., 2010, Pretesting the Likely Efficacy of Suggested Management Approaches to Data-Poor Fisheries. Mar. Coast. Fish. 2, 131–145. [Google Scholar]
  • Caroll J., Smit M.G.D., 2011, An Integrated Modeling Framework For Decision Support In Ecosystem-Based Management: Case Study Lofoten/Barents Sea. Society of Petroleum Engineers. [Google Scholar]
  • Charles A.T., 1998, Living with uncertainty in fisheries: analytical methods, management priorities and the Canadian groundfishery experience. Fish. Res. 37, 37–50. [Google Scholar]
  • Christensen V., Pauly D., 1992, Ecopath-Ii - a Software for Balancing Steady-State Ecosystem Models and Calculating Network Characteristics. Ecol. Model. 61, 169–185. [CrossRef] [Google Scholar]
  • Christensen V., Ferdaña Z., Steenbeek J., 2009, Spatial optimization of protected area placement incorporating ecological, social and economical criteria. Ecol. Model. 220, 2583–2593. [CrossRef] [Google Scholar]
  • Colleter M., Gascuel D., Ecoutin J.-M., Tito de Morais L., 2012, Modelling trophic flows in ecosystems to assess the efficiency of marine protected area (MPA), a case study on the coast of Senegal. Ecol. Model. 232, 1–13. [CrossRef] [Google Scholar]
  • Colleter M., Valls A., Guitton J., Gascuel D., Pauly D., Christensen V., 2015, Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository. Ecol. Model. 302, 42–53. [CrossRef] [Google Scholar]
  • Collie J., 2003, Using AMOEBAs to display multispecies, multifleet fisheries advice. ICES J. Mar. Sci. 60, 709–720. [CrossRef] [Google Scholar]
  • Collie J.S., Botsford L.W., Hastings A., Kaplan J.L., Largier J.L., Linvingston P.A., Plaganyi E.E., Rose K.A., Wells B., Werner F.E., 2016, Ecosystem models for fisheries management: finding the sweet spot. Fish Fish. 17, 101–125. [CrossRef] [Google Scholar]
  • Coll M., Shannon L.J., Kleisner K.M., Juan-Jordá M.J., Bundy A., Akoglu A.G., Banaru D., Boldt J.L., Borges M.F., Cook A., Diallo I., Fu C., Fox C., Gascuel D., Gurney L.J., Hattab T., Heymans J.J., Jouffre D., Knight B.R., Kucukavsar S., Large S.I., Lynam C., Machias A., Marshall K.N., Masski H., Ojaveer H., Piroddi C., Tam J., Thiao D., Thiaw M., Torres M.A., Travers-Trolet M., Tsagarakis K., Tuck I., van der Meeren G.I., Yemane D., Zador S.G., Shin Y.-J., 2016, Ecological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystems. Ecol. Indic. 60, 947–962. [CrossRef] [Google Scholar]
  • Costanza R., Sklar F., 1985, Articulation, Accuracy and Effectiveness of Mathematical-Models - a Review of Fresh-Water Wetland Applications. Ecol. Model. 27, 45–68. [CrossRef] [Google Scholar]
  • Cury P.M., Shin Y.-J., Planque B., Durant J.M., Fromentin J.-M., Kramer-Schadt S., Stenseth N.C., Travers M., Grimm V., 2008, Ecosystem oceanography for global change in fisheries. Trends Ecol. Evol. 23, 338–346. [CrossRef] [PubMed] [Google Scholar]
  • Daan N., 1987, Multispecies Versus Single-Species Assessment of North-Sea Fish Stocks. Can. J. Fish. Aquat. Sci. 44, 360–370. [CrossRef] [Google Scholar]
  • D’Agostini A., Gherardi D.F.M., Pezzi L.P., 2015, Connectivity of Marine Protected Areas and Its Relation with Total Kinetic Energy. PLoS One 10, e0139601. [Google Scholar]
  • Dambacher J.M., Rothlisberg P.C., Loneragan N.R., 2015, Qualitative mathematical models to support ecosystem-based management of Australia’s Northern Prawn Fishery. Ecol. Appl. 25, 278–298. [CrossRef] [PubMed] [Google Scholar]
  • Dankel D.J., Aps R., Padda G., Rockmann C., van der Sluijs J.P., Wilson D.C., Degnbol P., 2012, Advice under uncertainty in the marine system. Ices J. Mar. Sci. 69, 3–7. [CrossRef] [Google Scholar]
  • de Reynier Y.L., Levin P.S., Shoji N.L., 2010, Bringing stakeholders, scientists, and managers together through an integrated ecosystem assessment process. Mar. Policy 34, 534–540. [CrossRef] [Google Scholar]
  • Dickey-Collas M., 2014, Why the complex nature of integrated ecosystem assessments requires a flexible and adaptive approach. Ices J. Mar. Sci. 71, 1174–1182. [CrossRef] [Google Scholar]
  • Dickey-Collas M., Payne M.R., Trenkel V.M., Nash R.D.M., 2014, Hazard warning: model misuse ahead. ICES J. Mar. Sci. J. Cons. fst215. [Google Scholar]
  • EC, 2008a, Directive 2008/56/EC of the european parliament and of the council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive) (No. Off. J. Eur. Union 22). [Google Scholar]
  • EC, 2008b, Council Regulation (EC) No. 199/2008 of 25 February 2008 concerning the establishment of a Community framework for the collection, management and use of data in the fisheries sector and support for scientific advice regarding the common fisheries policy (No. Official Journal of the European Union, L60/1). [Google Scholar]
  • England P.R., Condie S., Feng M., Slawinski D., 2009, Modelling connectivity for resilient protected area design among areas for further assessment identified by DEWHA for the development of a Commonwealth MPA Network in the South-west Marine Region. Australia, CSIRO Marine and Atmospheric Research. [Google Scholar]
  • EU, 2013, Regulation (EU) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy (No. Official Journal of the European Union). Official Journal of the European Union. [Google Scholar]
  • EU, 2014, Directive 2014/89/EU of the European Parliament and of the Council of 23 July 2014 establishing a framework for maritime spatial planning. [Google Scholar]
  • Faivre R., Ioos B., Mahévas S., Makowski D., Monod H., 2013, Analyse de sensibilité et exploration de modèles. Application aux sciences de la nature et de l’environnement. Quae, Robert Faivre, Bertrand Iooss, Stéphanie Mahévas, David Makowski, Hervé Monod. [Google Scholar]
  • FAO, 2003, The ecosystem approach to fisheries. FAO Technical Guidelines for Responsible Fisheries. No. 4, Suppl. 2. Rome, FAO. 2003. 112 p. [Google Scholar]
  • FAO, 2008, Fisheries management. 2. The ecosystem approach to fisheries. 2.1 Best practices in ecosystem modelling for informing an ecosystem approach to fisheries. No. 4, Suppl. 2, Add. 1; Rome, FAO Fisheries Technical Guidelines for Responsible Fisheries. [Google Scholar]
  • Fay G., Punt A.E., Smith A.D.M., 2011, Impacts of spatial uncertainty on performance of age structure-based harvest strategies for blue eye trevalla (Hyperoglyphe antarctica). Fish. Res. 110, 391–407. [CrossRef] [Google Scholar]
  • Fluharty D., 2011, Decision-Making and Action Taking: Fisheries Management in a Changing Climate (No. OECD Food, Agriculture and Fisheries Papers, No. 36). OECD Publishing. [Google Scholar]
  • Fock H.O., Kloppmann M., Stelzenmüller V., 2011, Linking marine fisheries to environmental objectives: a case study on seafloor integrity under European maritime policies. Environ. Sci. Policy 14, 289–300. [CrossRef] [Google Scholar]
  • Forrest R.E., Savina M., Fulton E.A., Pitcher T.J., 2015, Do marine ecosystem models give consistent policy evaluations? A comparison of Atlantis and Ecosim. Fish. Res. 167, 293–312. [CrossRef] [Google Scholar]
  • Francis R., Shotton R., 1997, “Risk” in fisheries management: a review. Can. J. Fish. Aquat. Sci. 54, 1699–1715. [Google Scholar]
  • Friedrichs M.A.M., Dusenberry J.A., Anderson L.A., Armstrong R.A., Chai F., Christian J.R., Doney S.C., Dunne J., Fujii M., Hood R., McGillicuddy D.J., Moore J.K., Schartau M., Spitz Y.H., Wiggert J.D., 2007, Assessment of skill and portability in regional marine biogeochemical models: Role of multiple planktonic groups. J. Geophys. Res. Oceans 112, C08001. [Google Scholar]
  • Fulton E.A., 2010, Approaches to end-to-end ecosystem models. J. Mar. Syst. 81, 171–183. [Google Scholar]
  • Fulton E.A., 2011, Interesting times: winners, losers, and system shifts under climate change around Australia. ICES J. Mar. Sci. 68, 1329–1342. [CrossRef] [Google Scholar]
  • Fulton E.A., Smith A.D.M., 2004, Lessons learnt from a comparison of three ecosystem models for Port Phillip Bay, Australia. Afr. J. Mar. Sci. 26, 219–243. [CrossRef] [Google Scholar]
  • Fulton E.A., Smith A.D.M., Punt A.E., 2004, Ecological indicators of the ecosystem effects of fishing: Final Report. (Report No. R99/1546). Australian Fisheries Management Authority, Canberra. [Google Scholar]
  • Fulton E.A., Smith A.D.M., Punt A.E., 2005, Which ecological indicators can robustly detect effects of fishing? Ices J. Mar. Sci. 62, 540–551. [Google Scholar]
  • Fulton E.A., Smith A.D.M., Smith D.C., 2007, Alternative Management Strategies for Southeast Australian Commonwealth Fisheries: Stage 2: Quantitative Management Strategy Evaluation. Australian Fisheries Management Authority Report, ISBN-978-1-921232-86-2. [Google Scholar]
  • Fulton E.A., Smith A.D.M., Smith D.C., van Putten I.E., 2011, Human behaviour: the key source of uncertainty in fisheries management. Fish Fish. 12, 2–17. [CrossRef] [Google Scholar]
  • Fulton E.A., Johnson P., Gorton R., 2012, SE Fisheries and Climate Simulations: Barriers to Adaptation. 2010/023 - Quantitative testing of fisheries management arrangements under climate change using Atlantis, Appendix 3, Australia, CSIRO. [Google Scholar]
  • Fulton E., Jones T., Boschetti F., Chapman K., Little R., Syme G., Dzidic P., Gorton R., Sporcic M., Mare W. de la, 2013, Assessing the Impact of Stakeholder Engagement in Management Strategy Evaluation. Int. J. Eco. Manag. Eng. (IJEME). 3, 83–99. [Google Scholar]
  • Fulton E.A., Bax N.J., Bustamante R.H., Dambacher J.M., Dichmont C., Dunstan P.K., Hayes K.R., Hobday A.J., Pitcher R., Plagányi É.E., Punt A.E., Savina-Rolland M., Smith A.D.M., Smith D.C., 2015, Modelling marine protected areas: insights and hurdles. Phil. Trans. R Soc. B 370, 20140278. [Google Scholar]
  • Gaichas S.K., Aydin K.Y., Francis R.C., 2010, Using food web model results to inform stock assessment estimates of mortality and production for ecosystem-based fisheries management. Can. J. Fish. Aquat. Sci. 67, 1490–1506. [CrossRef] [Google Scholar]
  • Garcia D., Urtizberea A., Diez G., Gil J., Marchal P., 2013, Bio-economic management strategy evaluation of deepwater stocks using the FLBEIA model. Aquat. Living Resour. 26, 365–U3382. [CrossRef] [EDP Sciences] [Google Scholar]
  • Gårdmark A., Lindegren M., Neuenfeldt S., Blenckner T., Heikinheimo O., Müller-Karulis B., Niiranen S., Tomczak M.T., Aro E., Wikström A., Möllmann C., 2012, Biological ensemble modeling to evaluate potential futures of living marine resources. Ecol. Appl. 23, 742–754. [CrossRef] [Google Scholar]
  • Gewin V., 2004, Troubled Waters: The Future of Global Fisheries. PLoS Biol. 2, e113. [Google Scholar]
  • Girardin R., 2015, Ecosystem and fishers’ behaviour modelling: two crucial and interacting approaches to support Ecosystem Based Fisheries Management in the Eastern English Channel, Université Lille 1. [Google Scholar]
  • Girardin R., Vermard Y., Thebaud O., Tidd A., Marchal P., 2015, Predicting fisher response to competition for space and resources in a mixed demersal fishery. Ocean Coast. Manag. 106, 124–135. [CrossRef] [Google Scholar]
  • Gray R., Fulton E.A., Little L.R., Scott R., 2006, Ecosystem model specification within an agent based framework. Hobart, CSIRO. [Google Scholar]
  • Greenstreet S.P.R., Fraser H.M., Piet G.J., 2009, Using MPAs to address regional-scale ecological objectives in the North Sea: modelling the effects of fishing effort displacement. ICES J. Mar. Sci. J. Cons. 66, 90–100. [CrossRef] [Google Scholar]
  • Gribble N.A., 2003, GBR-prawn: modelling ecosystem impacts of changes in fisheries management of the commercial prawn (shrimp) trawl fishery in the far northern Great Barrier Reef. Fish. Res. 65, 493–506. [CrossRef] [Google Scholar]
  • Grimm V., Revilla E., Berger U., Jeltsch F., Mooij W.M., Railsback S.F., Thulke H.-H., Weiner J., Wiegand T., DeAngelis D.L., 2005, Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology. Science 310, 987–991. [CrossRef] [PubMed] [Google Scholar]
  • Grimm V., Ashauer R., Forbes V., Hommen U., Preuss T.G., Schmidt A., van den Brink P.J., Wogram J., Thorbek P., 2009, CREAM: a European project on mechanistic effect models for ecological risk assessment of chemicals. Environ. Sci. Pollut. Res. 16, 614–617. [CrossRef] [Google Scholar]
  • Guénette S., Meissa B., Gascuel D., 2014, Assessing the Contribution of Marine Protected Areas to the Trophic Functioning of Ecosystems: A Model for the Banc d’Arguin and the Mauritanian Shelf. PLoS One 9, e94742. [Google Scholar]
  • Guillen J., Macher C., Merzereaud M., Bertignac M., Fifas S., Guyader O., 2013, Estimating MSY and MEY in multi-species and multi-fleet fisheries, consequences and limits: an application to the Bay of Biscay mixed fishery. Mar. Policy 40, 64–74. [CrossRef] [Google Scholar]
  • Haddeland I., Clark D.B., Franssen W., Ludwig F., Voß F., Arnell N.W., Bertrand N., Best M., Folwell S., Gerten D., Gomes S., Gosling S.N., Hagemann S., Hanasaki N., Harding R., Heinke J., Kabat P., Koirala S., Oki T., Polcher J., Stacke T., Viterbo P., Weedon G.P., Yeh P., 2011, Multimodel Estimate of the Global Terrestrial Water Balance: Setup and First Results. J. Hydrometeorol. 12, 869–884. [CrossRef] [Google Scholar]
  • Hall S.J., 1998, Closed areas for fisheries management – the case consolidates. Trends Ecol. Evol. 13, 297–298. [CrossRef] [PubMed] [Google Scholar]
  • Hamilton S.H., ElSawah S., Guillaume J.H.A., Jakeman A.J., Pierce S.A., 2015, Integrated assessment and modelling: Overview and synthesis of salient dimensions. Environ. Model. Softw. 64, 215−229. [CrossRef] [Google Scholar]
  • Hannah C., Vezina A., St John M., 2010, The case for marine ecosystem models of intermediate complexity. Prog. Oceanogr. 84, 121−128. [CrossRef] [Google Scholar]
  • Harwood J., Stokes K., 2003, Coping with uncertainty in ecological advice: lessons from fisheries. Trends Ecol. Evol. 18, 617–622. [CrossRef] [Google Scholar]
  • Haynie A.C., Pfeiffer L., 2012, Why economics matters for understanding the effects of climate change on fisheries. ICES J. Mar. Sci. J. Cons. fss021. [Google Scholar]
  • Hill S.L., Watters G.M., Punt A.E., McAllister M.K., Le Quere C., Turner J., 2007, Model uncertainty in the ecosystem approach to fisheries. Fish Fish. 8, 315–336. [CrossRef] [Google Scholar]
  • Hobday A.J., 2010, Ensemble analysis of the future distribution of large pelagic fishes off Australia. Prog. Oceanogr. 86, 291–301. [CrossRef] [Google Scholar]
  • Holland D.S., 2000, A bioeconomic model of marine sanctuaries on Georges Bank. Can. J. Fish. Aquat. Sci. 57, 1307–1319. [CrossRef] [Google Scholar]
  • Hollowed A.B., Bax N., Beamish R., Collie J., Fogarty M., Livingston P., Pope J., Rice J.C., 2000, Are multispecies models an improvement on single-species models for measuring fishing impacts on marine ecosystems? Ices J. Mar. Sci. 57, 707–719. [Google Scholar]
  • Hughes T.P., Linares C., Dakos V., van de Leemput I.A., van Nes E.H., 2013, Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends Ecol. Evol. 28, 149–155. [CrossRef] [PubMed] [Google Scholar]
  • Hyder K., Rossberg A.G., Allen J.I., Austen M.C., Barciela R.M., Bannister H.J., Blackwell P.G., Blanchard J.L., Burrows M.T., Defriez E., Dorrington T., Edwards K.P., Garcia-Carreras B., Heath M.R., Hembury D.J., Heymans J.J., Holt J., Houle J.E., Jennings S., Mackinson S., Malcolm S.J., McPike R., Mee L., Mills D.K., Montgomery C., Pearson D., Pinnegar J.K., Pollicino M., Popova E.E., Rae L., Rogers S.I., Speirs D., Spence M.A., Thorpe R., Turner R.K., van der Molen J., Yool A., Paterson D.M., 2015, Making modelling count - increasing the contribution of shelf-seas community and ecosystem models to policy development and management. Mar. Policy 61, 291–302. [CrossRef] [Google Scholar]
  • ICES, 2013a, Report of the Workshop on Benchmarking Integrated Ecosystem Assessments (WKBEMIA) (No. ICES CM 2012/SSGRSP:08). 27–29 November 2012, ICES Headquarters, Copenhagen, Denmark. [Google Scholar]
  • ICES, 2013b, North Sea: multispecies considerations for the North Sea stocks (No. ICES Advice June 2013, Book 6, Sect. 6.3.1). International Council for the Exploration of the Sea, Copenhagen, Denmark. [Google Scholar]
  • ICES, 2014, Interim Report of the Working Group on Multispecies Assessment Meth-ods (WGSAM) (No. ICES CM 2014/SSGSUE:11). 20–24 October 2014, London, UK. [Google Scholar]
  • ICES, 2015a, First Interim Report of the Working Group on Integrating Ecological and Economic Models (WGIMM) (No. ICES CM 2015/SSGIEA:05). 11 - 12 May 2015, Via WebEx conference call. [Google Scholar]
  • ICES, 2015b, ICES 2015. Report of the Working Group on the assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK) (No. ICES CM 2015/ACOM?:13)., 28 April-7 May 2015, ICES HQ, Copenhagen, Denmark. [Google Scholar]
  • ICES, 2015c, Report of the Fifth Workshop on the Development of Quantitative Assessment Methodologies based on Life-history Traits, Exploitation Characteristics and other Relevant Parameters for Data-limited Stocks (WKLIFE V), 5–9 October 2015, Lisbon, Portugal. ICES CM 2015/ACOM:56. 157pp. [Google Scholar]
  • ICES, 2015d, Report of the Working Group on Mixed Fisheries Methods WGMIXFISH -METH) (No. ICES CM 2014/ACOM). [Google Scholar]
  • ICES, 2015e, Report of the Working Group on Mixed Fisheries Methods (WGMIXFISH-METH) (No. ICES CM 2015/ACOM). 5-9 October 2014, DTU-Aqua, Charlottenlund, Denmark. [Google Scholar]
  • Issaris Y., Katsanevakis S., Pantazi M., Vassilopoulou V., Panayotidis P., Kavadas S., Kokkali A., Salomidi M., Frantzis A., Panou A., Damalas D., Klaoudatos D., Sakellariou D., Drakopoulou V., Kyriakidou C., Maina I., Fric J., Smith C., Giakoumi S., Karris G., 2012, Ecological mapping and data quality assessment for the needs of ecosystem-based marine spatial management: case study Greek Ionian Sea and the adjacent gulfs. Mediterr. Mar. Sci. 13, 297–311. [CrossRef] [Google Scholar]
  • Johnson K.F., Monnahan C.C., McGilliard C.R., Vert-pre K.A., Anderson S.C., Cunningham C.J., Hurtado-Ferro F., Licandeo R.R., Muradian M.L., Ono K., Szuwalski C.S., Valero J.L., Whitten A.R., Punt A.E., 2015, Time-varying natural mortality in fisheries stock assessment models: identifying a default approach. Ices J. Mar. Sci. 72, 137–150. [CrossRef] [Google Scholar]
  • Joint Research Centre, 2014, Towards an integrated water modelling toolbox. Deliverable 9.1. Report on contribution to a scoping study on available modelling tools, strategy on modelling and Model toolbox including potential use of FATE in the toolbox. [Google Scholar]
  • Jolliff J.K., Kindle J.C., Shulman I., Penta B., Friedrichs M.A.M., Helber R., Arnone R.A., 2009, Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. J. Mar. Syst. 76, 64–82. [CrossRef] [Google Scholar]
  • Kaplan I.C., Marshall K.N., 2016, A guinea pig’s tale: learning to review end-to-end marine ecosystem models for management applications. ICES J. Mar. Sci. 73, 1715–1724. [CrossRef] [Google Scholar]
  • Kaplan I.C., Levin P.S., Burden M., Fulton E.A., 2010, Fishing catch shares in the face of global change: a framework for integrating cumulative impacts and single species management. Can. J. Fish. Aquat. Sci. 67, 1968–1982. [CrossRef] [Google Scholar]
  • Kaplan I.C., Horne P.J., Levin P.S., 2012, Screening California Current fishery management scenarios using the Atlantis end-to-end ecosystem model. Prog. Oceanogr. 102, 5–18. [CrossRef] [Google Scholar]
  • Kell L.T., Mosqueira I., Grosjean P., Fromentin J.-M., Garcia D., Hillary R., Jardim E., Mardle S., Pastoors M.A., Poos J.J., Scott F., Scott R.D., 2007, FLR: an open-source framework for the evaluation and development of management strategies. ICES J. Mar. Sci. J. Cons. 64, 640–646. [CrossRef] [Google Scholar]
  • Kleijnen J.P.C., Sanchez S.M., Lucas T.W., Cioppa T.M., 2005, State-of-the-Art Review: A User’s Guide to the Brave New World of Designing Simulation Experiments. Inf. J. Comput. 17, 263–289. [CrossRef] [Google Scholar]
  • Kraak S.B.M., Kelly C.J., Codling E.A., Rogan E., 2010, On scientists’ discomfort in fisheries advisory science: the example of simulation-based fisheries management-strategy evaluations: Scientists’ discomfort with fisheries MSE. Fish Fish. 11, 119−132. [CrossRef] [Google Scholar]
  • Kraus G., Pelletier D., Dubreuil J., Mollmann C., Hinrichsen H.-H., Bastardie F., Vermard Y., Mahevas S., 2008, A model-based evaluation of Marine Protected Areas: the example of eastern Baltic cod (Gadus morhua callarias L.). ICES J. Mar. Sci. 66, 109–121. [CrossRef] [Google Scholar]
  • Largouet C., Cordier M.-O., Bozec Y.-M., Zhao Y., Fontenelle G., 2012, Use of timed automata and model-checking to explore scenarios on ecosystem models. Environ. Model. Softw. 30, 123−138. [CrossRef] [Google Scholar]
  • Larkin P.A., 1977, An Epitaph for the Concept of Maximum Sustained Yield. Trans. Am. Fish. Soc. 106, 1–11. [CrossRef] [Google Scholar]
  • Lefort S., Aumont O., Bopp L., Arsouze T., Gehlen M., Maury O., 2015, Spatial and body-size dependent response of marine pelagic communities to projected global climate change. Glob. Change Biol. 21, 154–164. [CrossRef] [Google Scholar]
  • Lehodey P., Alheit J., Barange M., Baumgartner T., Beaugrand G., Drinkwater K., Fromentin J.-M., Hare S.R., Ottersen G., Perry R.I., Roy C., van der Lingen C.D., Werner F., 2006, Climate Variability, Fish, and Fisheries. J. Clim. 19, 5009–5030. [CrossRef] [Google Scholar]
  • Lehuta S., Mahévas S., Petitgas P., Pelletier D., 2010, Combining sensitivity and uncertainty analysis to evaluate the impact of management measures with ISIS–Fish: marine protected areas for the Bay of Biscay anchovy (Engraulis encrasicolus) fishery. ICES J. Mar. Sci. J. Cons. 67, 1063–1075. [CrossRef] [Google Scholar]
  • Lehuta S., Mahevas S., Le Floc’h P., Petitgas P., 2013a, A simulation-based approach to assess sensitivity and robustness of fisheries management indicators for the pelagic fishery in the Bay of Biscay. Can. J. Fish. Aquat. Sci. 70, 1741–1756. [CrossRef] [Google Scholar]
  • Lehuta S., Petitgas P., Mahévas S., Huret M., Vermard Y., Uriarte A., Record N.R., 2013b, Selection and validation of a complex fishery model using an uncertainty hierarchy. Fish. Res. 143, 57−66. [CrossRef] [Google Scholar]
  • Lehuta S., Vermard Y., Marchal, Paul, 2015, A spatial model of the mixed demersal fisheries in the Eastern Channel. In: Marine Productivity: Perturbations and Resilience of Socio-Ecosystems. Proc. 15th French-Japan. Oceanogr. Symposium. Presented at the 15th French-Japan. Oceanogr. Symposium, edited by H.-J. Ceccaldi et al., pp. 187–195. [Google Scholar]
  • Leslie H., Sievanen L., Crawford T.G., Gruby R., Villanueva-Aznar H.C., Campbell L.M., 2015, Learning from Ecosystem-Based Management in Practice. Coast. Manag. 43, 471–497. [CrossRef] [Google Scholar]
  • Lester S., Halpern B., Grorud-Colvert K., Lubchenco J., Ruttenberg B., Gaines S., Airamé S., Warner R., 2009, Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46. [CrossRef] [Google Scholar]
  • Levin P.S., Fogarty M.J., Murawski S.A., Fluharty D., 2009, Integrated Ecosystem Assessments: Developing the Scientific Basis for Ecosystem-Based Management of the Ocean. PLoS Biol 7, e1000014. [Google Scholar]
  • Levin P.S., Kelble C.R., Shuford R.L., Ainsworth C., de Reynier Y., Dunsmore R., Fogarty M.J., Holsman K., Howell E.A., Monaco M.E., Oakes S.A., Werner F., 2014, Guidance for implementation of integrated ecosystem assessments: a US perspective. ICES J. Mar. Sci. J. Cons. 71, 1198–1204. [CrossRef] [Google Scholar]
  • Levin P.S., Williams G.D., Rehr A., Norman K.C., Harvey C.J., 2015, Developing conservation targets in social-ecological systems. Ecol. Soc. 20, 6. [Google Scholar]
  • Lewy P., Vinther M., 2004, A stochastic age-length-structured multispecies model applied to North Sea stocks (No. ICES CM 2004 / FF: 20). [Google Scholar]
  • Libralato S., Coll M., Tempesta M., Santojanni A., Spoto M., Palomera I., Arneri E., Solidoro C., 2010, Food-web traits of protected and exploited areas of the Adriatic Sea. Biol. Conserv. 143, 2182–2194. [CrossRef] [Google Scholar]
  • Link J.S., Ihde T.F., Townsend H.M., Osgood K.E., Schirripa M.J., Kobayashi D.R., Gaichas S.K., Field J.C., Levin P.S., Aydin K.Y., others, 2010, Report of the 2nd National Ecosystem Modeling Workshop (NEMoW II): Bridging the Credibility Gap Dealing with Uncertainty in Ecosystem Models. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service. [Google Scholar]
  • Link J.S., Ihde T.F., Harvey C.J., Gaichas S.K., Field J.C., Brodziak J.K.T., Townsend H.M., Peterman R.M., 2012, Dealing with uncertainty in ecosystem models: The paradox of use for living marine resource management. Prog. Oceanogr. 102, 102–114. [CrossRef] [Google Scholar]
  • Livingston P., Aydin K., Boldt J., Ianelli J., Juradomolina J., 2005, A framework for ecosystem impacts assessment using an indicator approach. ICES J. Mar. Sci. 62, 592–597. [CrossRef] [Google Scholar]
  • Longo C., Hornborg S., Bartolino V., Tomczak M., Ciannelli L., Libralato S., Belgrano A., 2015, Role of trophic models and indicators in current marine fisheries management. Mar. Ecol. Prog. Ser. 538, 257–272. [CrossRef] [Google Scholar]
  • Lynch D.R., McGillicuddy D.J., Werner F.E., 2009, Skill assessment for coupled biological/physical models of marine systems. J. Mar. Syst. 76, 1–3. [CrossRef] [Google Scholar]
  • Macher C., Guyader O., Talidec C., Bertignac M., 2008, A cost-benefit analysis of improving trawl selectivity in the case of discards: The Nephrops norvegicus fishery in the Bay of Biscay. Fish. Res. 92, 76–89. [CrossRef] [Google Scholar]
  • Mackinson S., 2014, Combined analyses reveal environmentally driven changes in the North Sea ecosystem and raise questions regarding what makes an ecosystem model’s performance credible? Can. J. Fish. Aquat. Sci. 71, 31–46. [CrossRef] [Google Scholar]
  • Mackinson S., Blanchard J.L., Pinnegar J.K., Scott R., 2003, Consequences of Alternative Functional Response Formulations in Models Exploring Whale-Fishery Interactions. Mar. Mammal Sci. 19, 661–681. [CrossRef] [Google Scholar]
  • Mahévas S., Méhault S., Bertignac M., 2012, Consequences of change in selectivity versus the establishment Marine Protected Areas on the hake–nephrops fishery in the Bay of Biscay. Presented at the ICES Annual Science Conference. [Google Scholar]
  • Marchal P., Vermard Y., 2013, Evaluating deepwater fisheries management strategies using a mixed-fisheries and spatially explicit modelling framework. Ices J. Mar. Sci. 70, 768–781. [CrossRef] [Google Scholar]
  • Marchal P., Little L.R., Thébaud O., 2011, Quota allocation in mixed fisheries: a bioeconomic modelling approach applied to the Channel flatfish fisheries. ICES J. Mar. Sci. J. Cons. 68, 1580–1591. [CrossRef] [Google Scholar]
  • Marzloff M.P., Johnson C.R., Little L.R., Soulié J.-C., Ling S.D., Frusher S.D., 2013, Sensitivity analysis and pattern-oriented validation of TRITON, a model with alternative community states: Insights on temperate rocky reefs dynamics. Ecol. Model. 258, 16–32. [CrossRef] [Google Scholar]
  • Marzloff M.P., Little L.R., Johnson C.R., 2016, Building Resilience Against Climate-Driven Shifts in a Temperate Reef System: Staying Away from Context-Dependent Ecological Thresholds. Ecosystems 19, 1–15. [CrossRef] [Google Scholar]
  • Maury O., Gascuel D., 1999, SHADYS (“simulateur halieutique de dynamiques spatiales”), a GIS based numerical model of fisheries. Example application: The study of a marine protected area. Aquat. Living Resour. 12, 77–88. [Google Scholar]
  • Meier H.E.M., Andersson H.C., Arheimer B., Donnelly C., Eilola K., Gustafsson B.G., Kotwicki L., Neset T.-S., Niiranen S., Piwowarczyk J., Savchuk O.P., Schenk F., Wêsławski J.M., Zorita E., 2014, Ensemble Modeling of the Baltic Sea Ecosystem to Provide Scenarios for Management. AMBIO 43, 37–48. [CrossRef] [PubMed] [Google Scholar]
  • Melbourne-Thomas J., Johnson C.R., Perez P., Eustache J., Fulton E.A., Cleland D., 2011, Coupling Biophysical and Socioeconomic Models for Coral Reef Systems in Quintana Roo, Mexican Caribbean. Ecol. Soc. 16, 23. [Google Scholar]
  • Melbourne-Thomas J., Constable A., Wotherspoon S., Raymond B., 2013, Testing Paradigms of Ecosystem Change under Climate Warming in Antarctica. Plos One 8, e55093. [Google Scholar]
  • Metcalfe K., Vaz S., Engelhard G.H., Villanueva M.C., Smith R.J., Mackinson S., 2015, Evaluating conservation and fisheries management strategies by linking spatial prioritization software and ecosystem and fisheries modelling tools. J. Appl. Ecol. 52, 665–674. [CrossRef] [Google Scholar]
  • Mohaghegh S.D., 2014, Production Management Decision Analysis Using AI-Based Proxy Modeling of Reservoir Simulations. A Look-Back Case Study. Presented at the Society of Petroleum Engineers Annual Technical Conference and Exhibition held in Amsterdam, The Netherlands, 27−29 October. [Google Scholar]
  • Morzaria-Luna H.N., Ainsworth C.H., Kaplan I.C., Levin P.S., Fulton E.A., 2012, Exploring Trade-Offs between Fisheries and Conservation of the Vaquita Porpoise (Phocoena sinus) Using an Atlantis Ecosystem Model. PLoS ONE 7, e42917. [Google Scholar]
  • NMFS 2014, Atlantis Model for the California Current: Report of Methodology Review Panel Meeting. 30 June–2 July 2014, Seattle, Washington, NMFS-NWFSC. [Google Scholar]
  • NPFMC 2006, Draft Report of the Scientific and Statistical Committee to the North Pacific Fishery Management Council. [Google Scholar]
  • Oreskes N., Shraderfrechette K., Belitz K., 1994, Verification, Validation, and Confirmation of Numerical-Models in the Earth-Sciences. Science 263, 641–646. [CrossRef] [PubMed] [Google Scholar]
  • Pastoors M.A., Poos J.J., Kraak S.B.M., Machiels M.A.M., 2007, Validating management simulation models and implications for communicating results to stakeholders. Ices J. Mar. Sci. 64, 818–824. [CrossRef] [Google Scholar]
  • Peck S.L., 2004, Simulation as experiment: a philosophical reassessment for biological modeling. Trends Ecol. Evol. 19, 530–534. [CrossRef] [PubMed] [Google Scholar]
  • Pelletier D., Mahevas S., 2005, Spatially explicit fisheries simulation models for policy evaluation. Fish Fish. 6, 307–349. [CrossRef] [Google Scholar]
  • Pelletier D., Claudet J., Ferraris J., Benedetti-Cecchi L., Garcìa-Charton J.A., 2008, Models and indicators for assessing conservation and fisheries-related effects of marine protected areas. Can. J. Fish. Aquat. Sci. 65, 765–779. [CrossRef] [Google Scholar]
  • Pelletier D., Mahevas S., drouineau H.,Vermard Y., Thebaud O., Guyader O., Poussind B., 2009, Evaluation of the bioeconomic sustainability of multi-species multi-fleet fisheries under a wide range of policy options using ISIS-Fish. Ecol. Model. 220, 1013–1033. [CrossRef] [Google Scholar]
  • Perry A.L., 2005, Climate Change and Distribution Shifts in Marine Fishes. Science 308, 1912–1915. [CrossRef] [PubMed] [Google Scholar]
  • Pinnegar J.K., Hufnagl M., Sinerchia M., Palacz A.P., Girardin R., Travers-Trolet M., Fulton E.A., Gorton R., 2014, Holistic framework(s) for assessing multiple drivers. Deliverable No. 5.1.3 of the FP7 project VECTORS No. 266445. [Google Scholar]
  • Pinsky M.L., Fogarty M., 2012, Lagged social-ecological responses to climate and range shifts in fisheries. Clim. Change 115, 883–891. [Google Scholar]
  • Piroddi C., Teixeira H., Lynam C.P., Smith C., Alvarez M.C., Mazik K., Andonegi E., Churilova T., Tedesco L., Chifflet M., Chust G., Galparsoro I., Garcia A.C., Kämäri M., Kryvenko O., Lassalle G., Neville S., Niquil N., Papadopoulou N., Rossberg A.G., Suslin V., Uyarra M.C., 2015, Using ecological models to assess ecosystem status in support of the European Marine Strategy Framework Directive. Ecol. Indic. 58, 175–191. [CrossRef] [Google Scholar]
  • Plagányi E.E., 2007, Models for an ecosystem approach to fisheries (No. 447). FAO Fisheries Technical Paper. [Google Scholar]
  • Plagányi E.E., Bell J.D., Bustamante R.H., Dambacher J.M., Dennis D.M., Dichmont C.M., Dutra L.X.C., Fulton E.A., Hobday A.J., Ingrid van Putten E., Smith F., Smith A.D.M., Zhou S., 2011, Modelling climate-change effects on Australian and Pacific aquatic ecosystems: a review of analytical tools and management implications. Mar. Freshw. Res. 62, 1132–1147. [CrossRef] [Google Scholar]
  • Plagányi E.E., Punt A.E., Hillary R., Morello E.B., Thebaud O., Hutton T., Pillans R.D., Thorson J.T., Fulton E.A., Smith A.D.M., Smith F., Bayliss P., Haywood M., Lyne V., Rothlisberg P.C., 2014, Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity. Fish Fish. 15, 1–22. [CrossRef] [Google Scholar]
  • Planque B., 2015, Projecting the future state of marine ecosystems, “la grande illusion”? ICES J. Mar. Sci. J. Cons. fsv155. [Google Scholar]
  • Poos J.J., Machiels M.A.M., Pastoors M.A., 2006, Investigation of some Management Scenarios for North Sea Sole and Plaice in 2006 and beyond (No. Wageningen-IMARES: CVO Report, 06.004). IJmuiden, The Netherlands. [Google Scholar]
  • Prato G., Gascuel D., Valls A., Francour P., 2014, Balancing complexity and feasibility in Mediterranean coastal food-web models: uncertainty and constraints. Mar. Ecol. Prog. Ser. 512, 71–88. [Google Scholar]
  • Prellezo R., Accadia P., Andersen J.L., Andersen B.S., Buisman E., Little A., Nielsen J.R., Poos J.J., Powell J., Rockmann C., 2012, A review of EU bio-economic models for fisheries: The value of a diversity of models. Mar. Policy 36, 423–431. [CrossRef] [Google Scholar]
  • Pretzsch H., 2007, Analysing and modelling forest stand dynamics for practical application - an European review and perspective. Eurasian J. For. Resour. 10, 1–17. [Google Scholar]
  • Punt A.E., Smith A.D.M., Cui G., 2001, Review of progress in the introduction of management strategy evaluation (MSE) approaches in Australia’s South East Fishery. Mar. Freshw. Res. 52, 719. [Google Scholar]
  • Qiu W., Jones P.J.S., 2013, The emerging policy landscape for marine spatial planning in Europe. Mar. Policy 39, 182–190. [CrossRef] [Google Scholar]
  • Reecht Y., Gasche L., Lehuta S., Vaz S., Smith R., Mahévas S., Marchal P., 2015, Toward a Dynamical Approach for Systematic Conservation Planning of Eastern English Channel Fisheries. In: Marine Productivity: Perturbations and Resilience of Socio-ecosystemsProceedings of the 15th French-Japanese Oceanography Symposium. Ceccaldi, H.J., Hénocque, Y., Koike, Y., Komatsu, T., Stora, G., Tusseau-Vuillemin, M.-H. (Eds.), pp. 175–185. [Google Scholar]
  • Reum J.C.P., McDonald P.S., Ferriss B.E., Farrell D.M., Harvey C.J., Levin P.S., 2015, Qualitative network models in support of ecosystem approaches to bivalve aquaculture. Ices J. Mar. Sci. 72, 2278–2288. [CrossRef] [Google Scholar]
  • Roberts C.M., 2002, Marine Biodiversity Hotspots and Conservation Priorities for Tropical Reefs. Science 295, 1280–1284. [CrossRef] [PubMed] [Google Scholar]
  • Rochet M.-J., Rice J.C., 2009, Simulation-based management strategy evaluation: ignorance disguised as mathematics? ICES J. Mar. Sci. J. Cons. 66, 754–762. [CrossRef] [Google Scholar]
  • Rochet M.-J., Trenkel V.M., 2003, Which community indicators can measure the impact of fishing? A review and proposals. Can. J. Fish. Aquat. Sci. 60, 86–99. [CrossRef] [Google Scholar]
  • Rochette S., Lobry J., Lepage M., Boët P., 2009, Dealing with uncertainty in qualitative models with a semi-quantitative approach based on simulations. Application to the Gironde estuarine food web (France). Ecol. Model. 220, 122–132. [Google Scholar]
  • Romagnoni G., Mackinson S., Hong J., Eikeset A.M., 2015, The Ecospace model applied to the North Sea: Evaluating spatial predictions with fish biomass and fishing effort data. Ecol. Model. 300, 50–60. [CrossRef] [Google Scholar]
  • Rosa R., Carvalho A.R., Angelini R., 2014, Integrating fishermen knowledge and scientific analysis to assess changes in fish diversity and food web structure. Ocean Coast. Manag. 102, 258–268. [CrossRef] [Google Scholar]
  • Rose K.A., 2012, End-to-end models for marine ecosystems: Are we on the precipice of a significant advance or just putting lipstick on a pig? Sci. Mar. 76, 195–201. [Google Scholar]
  • Rose K.A., Allen J.I., Artioli Y., Barange M., Blackford J., Carlotti F., Cropp R., Daewel U., Edwards K., Flynn K., Hill S.L., HilleRisLambers R., Huse G., Mackinson S., Megrey B., Moll A., Rivkin R., Salihoglu B., Schrum C., Shannon L., Shin Y.-J., Smith S.L., Smith C., Solidoro C., St. John M., Zhou M., 2010, End-To-End Models for the Analysis of Marine Ecosystems: Challenges, Issues, and Next Steps. Mar. Coast. Fish. 2, 115–130. [CrossRef] [Google Scholar]
  • Rosenzweig C., Jones J.W., Hatfield J.L., Ruane A.C., Boote K.J., Thorburn P., Antle J.M., Nelson G.C., Porter C., Janssen S., Asseng S., Basso B., Ewert F., Wallach D., Baigorria G., Winter J.M., 2013, The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agric. For. Meteorol. 170, 166–182. [CrossRef] [Google Scholar]
  • Rötter R.P., Carter T.R., Olesen J.E., Porter J.R., 2011, Crop-climate models need an overhaul. Nat. Clim. Change 1, 175–177. [CrossRef] [Google Scholar]
  • Salomon A.K., Gaichas S.K., Shears N.T., Smith J.E., Madin E.M.P., Gaines S.D., 2010, Key Features and Context-Dependence of Fishery-Induced Trophic Cascades. Conserv. Biol. 24, 382–394. [CrossRef] [PubMed] [Google Scholar]
  • Saltelli A., Chan K., Scott E.M., 2008, Sensitivity Analysis. Wiley, Wiley. [Google Scholar]
  • Sargent R. G., 2007, Verification and validation of simulation models. Presented at the Proceedings of the 2007 Winter Simulation Conference, S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds. [Google Scholar]
  • Savina M., Condie S.A., Fulton E.A., 2013, The Role of Pre-Existing Disturbances in the Effect of Marine Reserves on Coastal Ecosystems: A Modelling Approach. PLoS ONE 8, e61207. [Google Scholar]
  • Savina M., Lunghi M., Archambault B., Baulier L., Huret M., Le Pape O., 2016, Sole larval supply to coastal nurseries: Interannual variability and connectivity at interregional and interpopulation scales. J. Sea Res. 111, 1–10. [CrossRef] [Google Scholar]
  • Scheffer M., Barrett S., Carpenter S.R., Folke C., Green A.J., Holmgren M., Hughes T.P., Kosten S., van de Leemput I.A., Nepstad D.C., van Nes E.H., Peeters E.T.H.M., Walker B., 2015, Creating a safe operating space for iconic ecosystems. Science 347, 1317–1319. [CrossRef] [PubMed] [Google Scholar]
  • Schellnhuber H.J., Frieler K., Kabat P., 2014, The elephant, the blind, and the intersectoral intercomparison of climate impacts. Proc. Natl. Acad. Sci. 111, 3225–3227. [CrossRef] [Google Scholar]
  • Schmolke A., Thorbek P., DeAngelis D.L., Grimm V., 2010, Ecological models supporting environmental decision making: a strategy for the future. Trends Ecol. Evol. 25, 479–486. [CrossRef] [PubMed] [Google Scholar]
  • Shin Y.-J., Travers M., Maury O., 2010, Coupling low and high trophic levels models: Towards a pathways-orientated approach for end-to-end models. Prog. Oceanogr. 84, 105–112. [CrossRef] [Google Scholar]
  • Simons S.L., Döring R., Temming A., 2014, Modelling the spatio-temporal interplay between North Sea saithe (Pollachius virens) and multiple fleet segments for management evaluation. Aquat. Living Resour. 27, 1–16. [CrossRef] [EDP Sciences] [Google Scholar]
  • Sims S., 1984, An Analysis of the Effect of Errors in the Natural Mortality-Rate on Stock-Size Estimates Using Virtual Population Analysis (cohort Analysis). J. Cons. 41, 149–153. [CrossRef] [Google Scholar]
  • Skern-Mauritzen M., Ottersen G., Handegard N.O., Huse G., Dingsør G.E., Stenseth N.C., Kjesbu O.S., 2016, Ecosystem processes are rarely included in tactical fisheries management. Fish Fish. 17, 165–175. [CrossRef] [Google Scholar]
  • Smith A., 1999, Implementing effective fisheries-management systems – management strategy evaluation and the Australian partnership approach. ICES J. Mar. Sci. 56, 967–979. [CrossRef] [Google Scholar]
  • Smith M., Fulton E., Day R., Shannon L., Shin Y.-J., 2015, Ecosystem modelling in the southern Benguela: comparisons of Atlantis, Ecopath with Ecosim, and OSMOSE under fishing scenarios. Afr. J. Mar. Sci. 37, 65–78. [CrossRef] [Google Scholar]
  • Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L., 2007, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007 (No. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.). [Google Scholar]
  • Spiegelhalter D., Pearson M., Short I., 2011, Visualizing Uncertainty About the Future. Science 333, 1393–1400. [CrossRef] [PubMed] [Google Scholar]
  • Stafford R., Williams R.L., Herbert R.J.H., 2015, Simple, policy friendly, ecological interaction models from uncertain data and expert opinion. Ocean Coast. Manag. 118, 88–96. [CrossRef] [Google Scholar]
  • STECF, 2015, Evaluation of management plans: Evaluation of the multi-annual plan for the North Sea demersal stocks (No. STECF-15- 04). Publications Office of the European Union, Luxembourg, EUR 27232 EN, JRC 95959. [Google Scholar]
  • STECF-SGMOS, 2010, Development of the Ecosystem Approach to Fisheries Management (EAFM) in European seas (No. SGMOS-10-03 Working Group). [Google Scholar]
  • Steele J.H., Aydin K., Gifford D.J., Hofmann E.E., 2013, Construction kits or virtual worlds; Management applications of E2E models. J. Mar. Syst. 109, 103–108. [CrossRef] [Google Scholar]
  • Sterman J. D., 1984, Appropriate summary statistics for evaluating the historical fit of system dynamics models. Dynamica 10 part II Winter, 51–66. [Google Scholar]
  • Stoltz G., 2010, Agrégation séquentielle de prédicteurs?: méthodologie générale et applications à la prévision de la qualité de l’air et à celle de la consommation électrique. J. Société Fr. Stat. 151(2), 66–106. [Google Scholar]
  • Thébaud O., Doyen L., Innes J., Lample M., Macher C., Mahévas S., Mullon C., Planque B., Quaas M., Smith T., Vermard Y., 2014, Building ecological-economic models and scenarios of marine resource systems: Workshop report. Mar. Policy 43, 382–386. [CrossRef] [Google Scholar]
  • Thorpe R.B., Le Quesne W.J.F., Luxford F., Collie J.S., Jennings S., 2015, Evaluation and management implications of uncertainty in a multispecies size-structured model of population and community responses to fishing. Methods Ecol. Evol. 6, 49–58. [CrossRef] [PubMed] [Google Scholar]
  • Townsend H.M., Link J.S., Osgood K.E., Gedamke T., Watters G.M., Polovina J.J., Levin P.S., Cyr N., Aydin K.Y., 2008, Report of the National Ecosystem Modeling Workshop (NEMoW) (No. NMFS-F/SPO- 87). U.S. Dep. Commerce, NOAA Tech. Memo. NMFS-F/SPO- 87. [Google Scholar]
  • Travers M., Shin Y.-J., Shannon L., Cury P., 2006, Simulating and testing the sensitivity of ecosystem-based indicators to fishing in the southern Benguela ecosystem. Can. J. Fish. Aquat. Sci. 63, 943–956. [CrossRef] [Google Scholar]
  • Travers M., Shin Y.-J., Jennings S., Cury P., 2007, Towards end-to-end models for investigating the effects of climate and fishing in marine ecosystems. Prog. Oceanogr. 75, 751–770. [Google Scholar]
  • Travers-Trolet M., Shin Y.-J., Field J., 2014a, An end-to-end coupled model ROMS-N 2 P 2 Z 2 D 2 -OSMOSE of the southern Benguela foodweb: parameterisation, calibration and pattern-oriented validation. Afr. J. Mar. Sci. 36, 11–29. [CrossRef] [Google Scholar]
  • Travers-Trolet M., Shin Y.-J., Shannon L.J., Moloney C.L., Field J.G., 2014b, Combined Fishing and Climate Forcing in the Southern Benguela Upwelling Ecosystem: An End-to-End Modelling Approach Reveals Dampened Effects. PLoS ONE 9, e94286. [Google Scholar]
  • Trenkel V.M., Rochet M.-J., Mesnil B., 2007, From model-based prescriptive advice to indicator-based interactive advice. ICES J. Mar. Sci. 64, 768–774. [CrossRef] [Google Scholar]
  • Tyrrell M.C., Link J.S., Moustahfid H., 2011, The importance of including predation in fish population models: Implications for biological reference points. Fish. Res. 108, 1–8. [Google Scholar]
  • Ulrich C., Reeves S.A., Vermard Y., Holmes S.J., Vanhee W., 2011, Reconciling single-species TACs in the North Sea demersal fisheries using the Fcube mixed-fisheries advice framework. Ices J. Mar. Sci. 68, 1535–1547. [CrossRef] [Google Scholar]
  • Valls A., Gascuel D., Guénette S., Francour P., 2012, Modeling trophic interactions to assess the effects of a marine protected area: case study in the NW Mediterranean Sea. Mar. Ecol. Prog. Ser. 456, 201–214. [Google Scholar]
  • Vinther M., Reeves S.A., Patterson K.R., 2004, From single-species advice to mixed-species management: taking the next step. Ices J. Mar. Sci. 61, 1398–1409. [CrossRef] [Google Scholar]
  • Walters C., 2000, Impacts of dispersal, ecological interactions, and fishing effort dynamics on efficacy of marine protected areas: how large should protected areas be? Bull. Mar. Sci. 66, 745–757. [Google Scholar]
  • Walters C., Pauly D., Christensen V., 1999, Ecospace: Prediction of Mesoscale Spatial Patterns in Trophic Relationships of Exploited Ecosystems, with Emphasis on the Impacts of Marine Protected Areas. Ecosystems 2, 539–554. [Google Scholar]
  • Walther Y.M., Möllmann C., 2013, Bringing integrated ecosystem assessments to real life: a scientific framework for ICES. ICES J. Mar. Sci. J. Cons. fst161. [Google Scholar]
  • Weijerman M., Fulton E.A., Janssen A.B.G., Kuiper J.J., Leemans R., Robson B.J., van de Leemput I.A., Mooij W.M., 2015, How models can support ecosystem-based management of coral reefs. Prog. Oceanogr. 138, 559–570. [Google Scholar]
  • Wiegand T., Jeltsch F., Hanski I., Grimm V., 2003, Using pattern-oriented modeling for revealing hidden information: a key for reconciling ecological theory and application. Oikos 100, 209–222. [Google Scholar]
  • Worm B., Hilborn R., Baum J.K., Branch T.A., Collie J.S., Costello C., Fogarty M.J., Fulton E.A., Hutchings J.A., Jennings S., Jensen O.P., Lotze H.K., Mace P.M., McClanahan T.R., Minto C., Palumbi S.R., Parma A.M., Ricard D., Rosenberg A.A., Watson R., Zeller D., 2009, Rebuilding Global Fisheries. Science 325, 578–585. [CrossRef] [PubMed] [Google Scholar]
  • Zitek A., Schmutz S., Preis S., Salles P., Bredeweg B., Muhar S., 2009, Evaluating the potential of qualitative reasoning models to contribute to sustainable catchment management. Ecol. Inform. 4, 381–395. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.