Aquat. Living Resour.
Volume 29, Number 2, April-June 2016
Symposium of the Association Française d'Halieutique (2015)
Article Number 210
Number of page(s) 8
Published online 10 October 2016
  • Andre C., Franck C., Lucie C., Jean-Claude D., Juliette D., Jean-Marie D., Ludovic D., Aurélie F., Clément G., Laure G., Stuart H., Roger J., Philippe K., Valentina L., Corinne M., Geoff M., Jocelyne M., Yoshi O., Emilie R., Bob S., Nicolas S., Sandrine V., Ching-Maria V., Yves V., Joanne W., Caroline W., 2009, Atlas des Habitats des Ressources Marines de la Manche Orientale – CHARM II. [Google Scholar]
  • Beare D., Machiels M., 2012, Beam trawlermen take feet off gas in response to oil price hikes. ICES J. Mar. Sci., DOI:10.1093/ icesjms/fss057. [Google Scholar]
  • Berthou P., Bégot E., Laurans M., Campéas A., Leblond E., Habasque J., 2013, Présentation de la suite logicielle AlgoPesca. Rapport interne Ifremer. [Google Scholar]
  • Charles C., Gillis D., Wade E., 2014, Using hidden markov models to infer vessel activities in the snow crab (chionoecetes opilio) fixed gear fishery and their application to catch standardization. Canadian J. Fish. Aquat. Sci. 71, 1817–1829. [CrossRef] [Google Scholar]
  • Daurès F., Trenkel V.M., Guyader O., 2013, Modelling the fishing costs of french commercial vessels in the bay of biscay. Fisheries Research 146, 74–85. [Google Scholar]
  • Deng R., Dichmont C., Milton D., Haywood M., Vance D., Hall N., Die D., 2005, Can vessel monitoring system data also be used to study trawling intensity and population depletion? the example of australia’s northern prawn fishery. Canadian J. Fish. Aquat. Sci. 62, 611–622. [CrossRef] [Google Scholar]
  • Dubé B., Diméet J., Rochet M.J., Tétard A., Gaudou O., Messanot C., Biseau A., Salaün M., 2012, Observations à bord des navires de pêche professionnelle. bilan de l’échantillonnage 2011. [Google Scholar]
  • Fridman A.L., Carrothers P., et al., 1986, Calculations for fishing gear designs. Fishing news books England. [Google Scholar]
  • Gloaguen P., Mahévas S., Rivot E., Woillez M., Guitton J., Vermard Y., Etienne M.P., 2015, An autoregressive model to describe fishing vessel movement and activity. Environmetrics 26, 17–28. [CrossRef] [Google Scholar]
  • Hintzen N.T., Bastardie F., Beare D., Piet G.J., Ulrich C., Deporte N., Egekvist J., Degel H., 2012, VMStools: Open-source software for the processing, analysis and visualisation of fisheries logbook and VMS data. Fisheries Research 115, 31–43. [Google Scholar]
  • Hintzen N.T., Piet G.J., Brunel T., 2010, Improved estimation of trawling tracks using cubic Hermite spline interpolation of position registration data. Fisheries Research 101, 108–115. [CrossRef] [Google Scholar]
  • Joo R., Bertrand S., Tam J., Fablet R., 2013, Hidden markov models: The best models for forager movements? Plos One 8. [Google Scholar]
  • Lazure P., Dumas F., 2008, An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv. Water Resour. 31, 233–250. [Google Scholar]
  • Leblond E., Daures F., Leonardi S., Demaneche S., Merrien C., Berthou P., Rostiaux E., Macher C., Lespagnol P., Le Grand C., Le Blond S., 2014, Synthèse des flottilles de pêche 2012, Flotte de Mer du Nord – Manche – Atlantique. Flotte de Méditerranée. [Google Scholar]
  • Lecornu F., De Roeck Y.H., 2009, Previmer – observations et prévisions côtières. La Houille Blanche , 60–63. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lee J., South A.B., Jennings S., 2010, Developing reliable, repeatable, and accessible methods to provide high-resolution estimates of fishing-effort distributions from vessel monitoring system (VMS) data. ICES J. Mar. Sci. 67, 1260–1271. [Google Scholar]
  • Mills C.M., Townsend S.E., Jennings S., Eastwood P.D., Houghton C.A., 2007, Estimating high resolution trawl fishing effort from satellite-based vessel monitoring system data. ICES J. Mar. Sci. 64, 248–255. [Google Scholar]
  • Peel D., Good N.M., 2011, A hidden markov model approach for determining vessel activity from vessel monitoring system data. Canadian J. Fish. Aquat. Sci. 68, 1252–1264. [CrossRef] [Google Scholar]
  • Pelletier D., Mahevas S., drouineau H., Vermard Y., Thebaud O., Guyader O., Poussind B., 2009, Evaluation of the bioeconomic sustainability of multi-species multi-fleet fisheries under a wide range of policy options using isis-fish. Ecol. Modelling 220, 1013–1033. [Google Scholar]
  • Poos J.J., Turenhout M.N., van Oostenbrugge H.A., Rijnsdorp A.D., 2013, Adaptive response of beam trawl fishers to rising fuel cost. ICES J. Mar. Sci. 70(3), 675–684. [CrossRef] [Google Scholar]
  • Rao J., 1976, Some tests based on arc-lengths for the circle. Sankhyā: The Indian Journal of Statistics, Series B, 329–338. [Google Scholar]
  • Rijnsdorp A.D., Poos J.J., Quirijns F.J., 2011, Spatial dimension and exploitation dynamics of local fishing grounds by fishers targeting several flatfish species. Canadian J. Fish. Aquat. Sci. 68, 1064–1076. [CrossRef] [Google Scholar]
  • Rosen S., Engås A., Fernö A., Jörgensen T., 2012, The reactions of shoaling adult cod to a pelagic trawl: implications for commercial trawling. ICES J. Mar. Sci. [Google Scholar]
  • Russo T., Parisi A., Cataudella S., 2011a, New insights in interpolating fishing tracks from VMS data for different metiers. Fisheries Research 108, 184–194. [Google Scholar]
  • Russo T., Parisi A., Prorgi M., Boccoli F., Cignini I., Tordoni M., Cataudella S., 2011b, When behaviour reveals activity: Assigning fishing effort to métiers based on VMS data using artificial neural networks. Fisheries Research 111, 53–64. [CrossRef] [Google Scholar]
  • Trenkel V., Lorance P., Mahévas S., 2004, Do visual transects provide true population density estimates for deepwater fish? ICES J. Mar. Sci. 61, 1050–1056. [Google Scholar]
  • Vermard Y., Rivot E., Mahevas S., Marchal P., Gascuel D., 2010, Identifying fishing trip behaviour and estimating fishing effort from VMS data using bayesian hidden markov models. Ecol. Modelling 221, 1757–1769. [Google Scholar]
  • Walker E., Bez N., 2010, A pioneer validation of a state-space model of vessel trajectories (VMS) with observers’ data. Ecol. Modelling 221, 2008–2017. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.