Open Access
Issue
Aquat. Living Resour.
Volume 29, Number 1, January-March 2016
Article Number 103
Number of page(s) 13
DOI https://doi.org/10.1051/alr/2016012
Published online 23 May 2016
  • An H.S., Shin E.H., Lee J.W., Nam M.M., Myeong J.I., An C.M., 2013, Comparative genetic variability between broodstock and offspring populations of Korean starry flounder used for stock enhancement in a hatchery by using microsatellite DNA analyses. Genet. Mol. Res. 12, 6319–6330. [CrossRef] [PubMed] [Google Scholar]
  • Araki H., Schmid C., 2010, Is hatchery stocking a help or harm?: Evidence, limitations and future directions in ecological and genetic surveys. Aquaculture 308, S2-S11, Supplement: Genetics in Aquaculture X. [CrossRef] [Google Scholar]
  • Bartel R., 1988, Trouts in Poland. Pol. Arch. Hydrobiol. 35, 321–339. [Google Scholar]
  • Bartel R., 1993, Anadromous fishes in Poland. Bull. Sea Fish. Inst. 128, 1–15. [Google Scholar]
  • Baskett M.L., Burgess S.C., Waples R.S., 2013, Assessing strategies to minimize unintended fitness consequences of aquaculture on wild populations. Evol. Appl. 6, 1090–1108. [CrossRef] [PubMed] [Google Scholar]
  • Beacham T.D., McIntosh B., Wallace C., 2010, A comparison of stock and individual identification for sockeye salmon (Oncorhynchus nerka) in British Columbia provided by microsatellites and single nucleotide polymorphisms. Can. J. Fish. Aquat. Sci. 67, 1274–1290. [CrossRef] [Google Scholar]
  • Beaumont A., Boudry P., Hoare K., 2010, Biotechnology and Genetics in Fisheries and Aquaculture, 2nd Edition. Oxford, Wiley-Blackwell, p. 204. [Google Scholar]
  • Belkhir K., Borsa P., Chikhi L., Raufaste N., Bonhomme F., 2000, GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier, France, 1996–2004. [Google Scholar]
  • Benzécri J.P., 1992, Correspondence analysis handbook. Statistics: A Series of Text-books and Monographs. New York, Marcel Dekker Inc., p. 688. [Google Scholar]
  • Bernaś R., Burzyński A., Dȩbowski P., Poćwierz-Kotus A., Wenne R., 2014, Genetic diversity within sea trout population from an intensively stocked southern Baltic river, based on microsatellite DNA analysis. Fisheries Manage. Ecol. 21, 5, 398–409. [CrossRef] [Google Scholar]
  • Bernaś R., Poćwierz-Kotus A., Dębowski P., Wenne R., 2016, The genetic relationship between extirpated and contemporary Atlantic salmon Salmo salar L. lines from the southern Baltic Sea. Genet. Sel. Evol. 48, 29. [CrossRef] [Google Scholar]
  • Bert T.M., Arnold W.S., McMillen-Jackson A.L., Wilbur A.E., Crawford C., 2011, Natural and Anthropogenic Forces Shape the Population Genetics and Recent Evolutionary History of Eastern United States Bay Scallops (Argopecten irradians). J. Shellfish Res. 30, 583–608. [CrossRef] [Google Scholar]
  • Blanco Gonzalez E., Umino T., 2009, Fine-scale genetic structure derived from stocking black sea bream, Acanthopagrus schlegelii (Bleeker, 1854), in Hiroshima Bay, Japan. J. Appl. Ichthyol. 25, 407–410. [CrossRef] [Google Scholar]
  • Blanco Gonzalez E., Aritaki M., Knutsen H., Taniguchi N., 2015, Effects of Large-Scale Releases on the Genetic Structure of Red Sea Bream (Pagrus major, Temminck et Schlegel) Populations in Japan. PLoS One 10, e0125743 [CrossRef] [Google Scholar]
  • Borzȩcka I., 2010, Classifying Vistula and Pomeranian sea trout populations using discriminant functions based on selected scale characters. Arch. Pol. Fish. 18, 123–131. [CrossRef] [Google Scholar]
  • Boscari E., Congiu L., 2014, The need for genetic support in restocking activities andex situconservation programmes: the case of the Adriatic sturgeon (Acipenser naccarii Bonaparte, 1836) in the Ticino River Park. J. Appl. Ichthyol. 30, 1416–1422. [CrossRef] [Google Scholar]
  • Carlton J.T., 1979, Introduced invertebrates of San Francisco Bay. In: Conomos T.J. (Ed.), San Francisco Bay: The urbanized Estuary. Amer. Assoc. Adv. Sci., Pac. Div. San Francisco, California, pp. 427–444. [Google Scholar]
  • Chelenkova P., Petkova R., Yochev S., Vasilev M., Malamov D., Chakarov S., 2012, One Fish, Two Fish, Old Fish, New Fish – Is the Biodiversity of Bulgarian Native Brown Trout (S. trutta fario) Populations at Risk? Biotechnol. Biotechnol. Eq. 26, 2894–2898. [CrossRef] [Google Scholar]
  • Darden T.L., Sessions F., Denson M.R., 2013, Use of Genetic Microsatellite Markers to Identify Factors Affecting Stocking Success in Striped Bass. Book Series: American Fisheries Society Symposium 80, 395–411. [Google Scholar]
  • Dębowski P., Bartel R., 1995, Homing of tagged sea trout (Salmo trutta L.). Smolts released into polish rivers. Arch. Pol. Fish. 3, 107–122. [Google Scholar]
  • Drywa A., Poćwierz-Kotus A., Wąs A., Dobosz S., Kent M.P., Lien S., Bernaś R., Wenne R., 2013, Genotyping of two populations of Southern Baltic sea trout Salmo trutta m. trutta using an Atlantic salmon derived SNP-array. Mar. Genomics 9, 25–32. [CrossRef] [PubMed] [Google Scholar]
  • Drywa A., Poćwierz-Kotus A., Dobosz S., Kent M.P., Lien S., Wenne R., 2014. Identification of multiple diagnostic SNP loci for differentiation of three salmonid species using SNP-arrays. Mar. Genomics 15, 5–6. [CrossRef] [PubMed] [Google Scholar]
  • Earl D.A., von Holdt B.M., 2012, STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. [CrossRef] [Google Scholar]
  • Excoffier L., Lischer H.E.L., 2010, Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. [CrossRef] [PubMed] [Google Scholar]
  • Evanno G., Regnaut S., Goudet J., 2005, Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620. [CrossRef] [PubMed] [Google Scholar]
  • Faulks L.K., Gilligan D.M., Beheregaray L.B., 2011, The role of anthropogenic vs. natural in-stream structures in determining connectivity and genetic diversity in an endangered freshwater fish, Macquarie perch (Macquaria australasica). Evol. Appl. 4, 589–601. [CrossRef] [PubMed] [Google Scholar]
  • Filipowicz M., Burzyński A., Ňmietanka B., Wenne R., 2008, Recombination in Mitochondrial DNA of European Mussels Mytilus. J. Mol. Evol. 67, 377–388. [CrossRef] [PubMed] [Google Scholar]
  • Fraser D.J., Cook A.M., Eddington J.D., Bentzen P., Hutchings J.A., 2008, Mixed evidence for reduced local adaption in wild salmon resulting from interbreeding with escaped farmed salmon: complexities in hybrid fitness. Evol. Appl. 1, 501–512. [CrossRef] [PubMed] [Google Scholar]
  • Gabriel S., Ziaugra L., Tabbaa D., 2009, SNP genotyping using the Sequenom MassARRAY iPLEX platform. Current Protocols in Human Genetics, Suppl. 60, Unit 2.12. [Google Scholar]
  • Glover K.A., Hansen M.M., Lien S., Als T.D., Houheim B., Skaala O., 2010, A comparison of SNP and STR loci for delineating population structure and performing individual genetic assignment. BMC Genet. 11, 2. [CrossRef] [PubMed] [Google Scholar]
  • Goudet J., 1995, FSTAT Version 1.2: a computer program to calculate F-statistics. J. Hered. 86, 485–486. [Google Scholar]
  • Griffiths J.R., Schindler D.E., Seeb L.W., 2013, How stock of origin affects performance of individuals across a meta-ecosystem: an example from sockeye salmon. PLoS One 8, e58584. [CrossRef] [PubMed] [Google Scholar]
  • Gruenthal K.M., Drawbridge M.A., 2012, Toward responsible stock enhancement: broadcast spawning dynamics and adaptive genetic management in white seabass aquaculture. Evol. Appl. 5, 405–417. [CrossRef] [PubMed] [Google Scholar]
  • Halvorson H., Alexis M., Burgess G., Coimbra J., Le Gal Y., Grealy M., Gutnick D., Höfle M., Smolenicka Z., Walther B., Wenne R. Olafsen J, 2001, Marine Biotechnology: A European Strategy for Marine Biotechnology. European Science Foundation Marine Board Feasibility Study Group Report, ESF Marine Board Position Paper 4, pp 30. [Google Scholar]
  • Hansen M.M., Fraser D.J., Meier K., Mensberg K.L.D., 2009, Sixty years of anthropogenic pressure: a spatio-temporal genetic analysis of brown trout populations subject to stocking and population declines. Mol. Ecol. 18, 2549–2562. [CrossRef] [PubMed] [Google Scholar]
  • Hansen M.M., Ruzzante D.E., Nielsen E.E., Bekkevold D., Mensberg K.L.D., 2002, Long-term effective population sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout (Salmo trutta) populations. Mol. Ecol. 11, 2523–2535. [CrossRef] [PubMed] [Google Scholar]
  • Hansen M.M., Limborg M.T., Ferchaud A.L., Pujolar J.M., 2014, The effects of Medieval dams on genetic divergence and demographic history in brown trout populations. BMC Evol. Biol. 14, 122. [CrossRef] [PubMed] [Google Scholar]
  • Hasegawa K., Maekawa K., 2008, Different longitudinal distribution patterns of native white-spotted charr and non-native brown trout in Monbetsu stream, Hokkaido, northern Japan. Ecol. Freshwat. Fish 17, 189–192. [CrossRef] [Google Scholar]
  • HELCOM, 2011, Salmon and Sea Trout Populations and Rivers in the Baltic Sea. HELCOM assessment of salmon (Salmo salar) and sea trout (Salmo trutta) populations and habitats in rivers to the Baltic Sea. Baltic Sea Environment Proceedings No. 126A, p. 82. [Google Scholar]
  • Horváth Á., Hoitsy G., Kovács, B., Kánainé Sipos D., Õsz, Á., Bogataj, K., Urbányi, B, 2013, The effect of domestication on a brown trout (Salmo trutta m. fario) broodstock in Hungary. Aquacult. Int. 22, 5–11. [CrossRef] [Google Scholar]
  • ICES, 2013, Report of the Baltic Salmon and Trout Assessment Working Group (WGBAST), 3–12 April 2013, Tallinn, Estonia. ICES CM 2013/ACOM: 08, p. 334. [Google Scholar]
  • Jager H.I., Chandler J.A., Lepla K.B., Van Winkle W., 2001, A theoretical study of river fragmentation by dams and its effects on white sturgeon populations. Environ. Biol. Fishes 60, 347–361. [CrossRef] [Google Scholar]
  • Jakobsson M., Rosenberg N.A., 2007, CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806. [CrossRef] [PubMed] [Google Scholar]
  • Jensen L.F., Hansen M.M., Carlsson J., Loeschcke V., Mansberg K.L.D., 2005, Spatial and temporal genetic differentiation and effective population size of brown trout (Salmo trutta, L.) in small Danish rivers. Conserv. Genet. 6, 615–621. [CrossRef] [Google Scholar]
  • Kalinowski S.T., Manlove K.R., Taper, M.L., 2007, ONCOR: A Computer Program for Genetic Stock Identification. Department of Ecology. Montana State University, Bozeman, MT. http://www.montana.edu/kalinowski/Software/ONCOR.htm. [Google Scholar]
  • Kallio-Nyberg I., Romakkaniemi A., Jokikokko E., Saloniemi I., Jutila E., 2015, Differences between wild and reared Salmo salar stocks of two northern Baltic Sea rivers. Fish. Res. 165, 85–95. [CrossRef] [Google Scholar]
  • Kijewski T., Wijsman J.W.M., Hummel H, Wenne R. 2009 Genetic composition of cultured and wild mussels Mytilus from Netherlands and transfers from Ireland and Great Britain. Aquaculture 287, 292–296 [CrossRef] [Google Scholar]
  • Klemetsen A., Amundsen P.A., Dempson J.B., Jonsson B., Jonsson N., O’Connell M.F., Mortensen E., 2003, Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol. Freshwat. Fish 12, 1–59. [CrossRef] [Google Scholar]
  • Kohout J., Šedivá A., Apostolou A., Stefanov T., Maræ S., Gaffarðlu M., Łlechta V., 2013, Genetic diversity and phylogenetic origin of brown trout Salmo trutta populations in eastern Balkans. Biologia 68, 1229–1237. [CrossRef] [Google Scholar]
  • Koljonen M.L., Pella J.J., Masuda M., 2005, Classical individual assignments versus mixture modeling to estimate stock proportions in Atlantic salmon (Salmo salar) catches from DNA microsatellite data. Can. J. Fish. Aquat. Sci. 62, 2143–2158. [CrossRef] [Google Scholar]
  • Koljonen M.L., Gross R., Koskiniemi J, 2014, Wild Estonian and Russian sea trout (Salmo trutta) in Finnish coastal sea trout catches: results of genetic mixed-stock analysis. Hereditas 151, 177–195. [CrossRef] [PubMed] [Google Scholar]
  • Lallias D.Boudry P.Batista F.M.Beaumont A.King J.W., Turner J.R.Lapègue S., 2015, Invasion genetics of the Pacific oyster Crassostrea gigas in the British Isles inferred from microsatellite and mitochondrial markers. Biol. Invasions 17, 2581–2595. [CrossRef] [Google Scholar]
  • Laikre L., Schwartz M.K., Waples R.S., Ryman N., and The GeM Working Group, 2010, Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends Ecol. Evol 25, 520–529. [CrossRef] [PubMed] [Google Scholar]
  • Lamaze F.C., Sauvage C., Marie A., Garant D., Bernatchez L., 2012, Dynamics of introgressive hybridization assessed by SNP population genomics of coding genes in stocked brook charr (Salvelinus fontinalis). Mol. Ecol. 21, 2877–2895. [CrossRef] [PubMed] [Google Scholar]
  • Liu Y., Diserud O.H., Hindar K., Skonhoft A., 2013, An ecological-economic model on the effects of interactions between escaped farmed and wild salmon (Salmo salar). Fish Fish. 14, 158–173. [CrossRef] [Google Scholar]
  • Łuczyński M., Bartel R., Vuorinen J.A., Domagała J., ŕółkiewicz L., Brzuzan, P., 2000, Biochemical genetic characteristics of Polish sea trout (Salmo trutta trutta L.) populations. Pol. Arch. Hydrobiol. 47, 21–28. [Google Scholar]
  • Madeira M.J., Gomez-Moliner B.J., Machordom A., 2005, Genetic introgression on freshwater fish populations caused by restocking programmes Biol. Invasions 7, 117–125. [CrossRef] [Google Scholar]
  • Marshall S.H., Ramirez R., Labra A., Carmona M., Munoz C., 2014, Bona fide evidence for natural vertical transmission of infectious salmon anemia virus in freshwater brood stocks of farmed Atlantic salmon (Salmo salar) in Southern Chile. J. Virol 88, 6012–6018. [CrossRef] [PubMed] [Google Scholar]
  • McQuaid C.D., Porri F., Nicastro K.R., Zardi G.I., 2015, Simple, scale-dependent patterns emerge from very complex effects-an example from the intertidal mussel Mytilus galloprovincialis and Perna perna. Oceanogr. Mar. Biol. 53, 127–156. [CrossRef] [Google Scholar]
  • Meehan W.B., Carlton J., Wenne R., 1989, Genetic affinities of the bivalve Macoma balthica from the Pacific coast of North America: evidence for recent introduction and historical distribution. Mar. Biol. 102, 235–241. [CrossRef] [Google Scholar]
  • Meldgaard T., Nielsen E.E., Loeschcke V., 2003, Fragmentation by weirs in a riverine system: A study of genetic variation in time and space among populations of European grayling (Thymallus thymallus) in a Danish river system. Conserv. Genet. 4, 735–747. [CrossRef] [Google Scholar]
  • Milano I., Babbucci M., Cariani A., Atanassova M., Bekkevold D., Carvalho G.R., Espineira M., Fiorentino F., Garofalo G., Geffen A.J., Hansen J.H., Helyar S.J., Nielsen E.E., Ogden R., Patarnello T., Stagioni M., FishPopTrace Consortium, Tinti F., Bargelloni L., 2014, Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius). Mol. Ecol. 23, 118–135. [CrossRef] [PubMed] [Google Scholar]
  • Miller P.A., Elliott N.G., Koutoulis A., Kube P.D., Vaillancourt R.E., 2012, Genetic Diversity of Cultured, Naturalized, and Native Pacific Oysters, Crassostrea gigas, Determined from Multiplexed Microsatellite Markers. J. Shellfish Res. 31, 611–617. [CrossRef] [Google Scholar]
  • Milot E., Perrier C., Papillon L., Dodson J.J., Bernatchez L., 2013, Reduced fitness of Atlantic salmon released in the wild after one generation of captive breeding. Evol. Appl. 6, 472–485. [CrossRef] [PubMed] [Google Scholar]
  • Mineur F., Provan J., Arnott G., 2014, Phylogeographical analyses of shellfish viruses: inferring a geographical origin for ostreid herpesviruses OsHV-1 (Malacoherpesviridae). Mar. Biol. 162, 181–192. [CrossRef] [Google Scholar]
  • Morin P.A., Luikart G., Wayne R.K., The SNP Workshop Group, 2004, SNPs in ecology, evolution and conservation. Trends Ecol. Evol. 19, 208–216. [CrossRef] [Google Scholar]
  • Morita K., Yamamoto S., 2002, Effects of habitat fragmentation by damming on the persistence of stream-dwelling charr populations. Conserv Biol. 16, 1318–1323. [CrossRef] [Google Scholar]
  • Murray A.G., 2013, Epidemiology of the spread of viral diseases under aquaculture. Curr. Opin. Virol. 3, 74–78. [CrossRef] [PubMed] [Google Scholar]
  • Naish K.A., Seamons T.R., Dauer M.B., Hauser L., Quinn T.P., 2013, Relationship between effective population size, inbreeding and adult fitness-related traits in a steelhead (Oncorhynchus mykiss) population released in the wild. Mol. Ecol. 22, 1295–1309. [CrossRef] [PubMed] [Google Scholar]
  • Nakajima K., Kitada S., Habara Y., Sano S., Yokoyama E., Sugaya T., Iwamoto A., Kishino H., Hamasaki K., Taylor E., 2014, Genetic effects of marine stock enhancement: a case study based on the highly piscivorous Japanese Spanish mackerel. Can. J. Fish. Aquat. Sci. 71, 301–314. [CrossRef] [Google Scholar]
  • Nei M., 1978, Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590. [PubMed] [Google Scholar]
  • Nei M., 1987, Molecular Evolutionary Genetics, New York, Columbia University Press, p. 512. [Google Scholar]
  • Ostergaard S., Hansen M.M., Loeschcke V., Nielsen W.E., 2003, Long-term temporal changes of genetic composition in brown trout (Salmo trutta L.) populations inhabiting an unstable environment. Mol. Ecol. 12, 3123–3135. [CrossRef] [PubMed] [Google Scholar]
  • Ozerov M., Vasemagi A., Wennevik V., Diaz-Fernandez R., Kent M., Gilbey J., Prusov S., Niemela E., Vaha J.P., 2013, Finding markers that make a difference: DNA pooling and SNP-arrays identify population informative markers for genetic stock identification. PloS ONE 8, e82434. [CrossRef] [PubMed] [Google Scholar]
  • Paris J.R., King R.A., Stevens J.R., 2015, Human mining activity across the ages determines the genetic structure of modern brown trout (Salmo trutta L.) populations. Evol. Appl. 8, 573–585. [CrossRef] [PubMed] [Google Scholar]
  • Pedersen S., Heinimaa P., Pakarinen T. (Eds.), 2012, Workshop on Baltic Sea Trout, Helsinki, Finland, 11–13 October 2011 DTU Aqua Report No 248–2012. National Institute of Aquatic Resources, Technical University of Denmark, p. 95. [Google Scholar]
  • Perrier C., Guyomard R., Bagliniere J.L., Nikolic N., Evanno G., 2013, Changes in the genetic structure of Atlantic salmon populations over four decades reveal substantial impacts of stocking and potential resiliency. Ecol Evol 3, 2334–2349. [CrossRef] [PubMed] [Google Scholar]
  • Poćwierz-Kotus A., Wenne R., 2010, Properties of mobile elements of genomes and their application in biotechnology. Environ. Biotech. 6, 24–36. [Google Scholar]
  • Poćwierz-Kotus A., Burzyński A, Wenne R., 2007, Family of Tc1-like elements from fish genomes and horizontal transfer. Gene 390, 243–251. [CrossRef] [Google Scholar]
  • Poćwierz-Kotus A., Burzyński A, Wenne R., 2010, Identification of a Tc1-like transposon integration site in the genome of the flounder (Platichthys flesus): a novel use of an inverse PCR method. Mar. Genomics 3, 45–50. [CrossRef] [PubMed] [Google Scholar]
  • Poćwierz-Kotus A., Bernaś R., Dębowski P., Kent M.P., Lien. S.,Kesler M., Titov S., Leliuna E., Jespersen H., Drywa A., Wenne R., 2014, Genetic differentiation of southeast Baltic populations of sea trout inferred from single nucleotide polymorphisms. Anim. Genet. 45, 96–104. [CrossRef] [PubMed] [Google Scholar]
  • Poćwierz-Kotus A., Bernaś R., Kent M.P., Lien S., Leliuna E., Dębowski P., Wenne R., 2015a Restitution and genetic differentiation of salmon populations in the southern Baltic genotyped with the Atlantic salmon 7K SNP array. Gen Sel Evol. 47, 39. [CrossRef] [Google Scholar]
  • Poćwierz-Kotus A., Kijewska A., Petereit C., Bernaś R., Więcaszek B., Arnyasi M., Lien S., Kent M.P.,Wenne R., 2015b, Genetic differentiation of brackish water populations of cod Gadus morhua in the southern Baltic, inferred from genotyping using SNP-arrays. Mar. Genomics 19, 17–22. [CrossRef] [PubMed] [Google Scholar]
  • Poteaux C., Berrebi P., 1997, Intégrité génomique et repeuplements chez la truite commune du versant méditerranéen. Bull. Fr. Pêche Piscic. 344–345, 309–322. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pritchard J.K., Stephens M., Donnelly P., 2000, Inference of population structure using multilocus genotype data. Genetics 155, 945–959. [PubMed] [Google Scholar]
  • Pukk L., Kuparinen A., Järv L., Gross R., Vasemägi A., 2013, Genetic and life-history changes associated with fisheries-induced population collapse. Evol. Appl. 6, 749–760. [CrossRef] [PubMed] [Google Scholar]
  • Pustovrh G., Sušnik Bajec S., Snoj, A., 2012, A set of SNPs for Salmo trutta and its application in supplementary breeding programs. Aquaculture 370–371, 102–108. [CrossRef] [Google Scholar]
  • Rice W.R., 1989, Analyzing tables of statistical tests. Evolution 43, 223–225. [CrossRef] [PubMed] [Google Scholar]
  • Salminen M., Koljonen M.L., Säisä M., Ruuhijärvi J., 2012, Genetic effects of supportive stockings on native pikeperch populations in boreal lakes – three cases, three different outcomes. Hereditas 149, 1–15. [CrossRef] [PubMed] [Google Scholar]
  • Satake A., Araki H., 2011, Stocking of captive-bred fish can cause long-term population decline and gene pool replacement: predictions from a population dynamics model incorporating density-dependent mortality. Theor. Ecol. 5, 283–296. [CrossRef] [Google Scholar]
  • Seeb J.E., Carvalho G., Hauser L., Naish K., Roberst S., Seeb L.W., 2011, Single-nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. Mol. Ecol. Resour. 11, S1–S8. [CrossRef] [Google Scholar]
  • Selly S.L.C., Hickey J., Stevens J.R., 2014, A tale of two hatcheries: Assessing bias in the hatchery process for Atlantic salmon (Salmo salar L.). Aquaculture 434, 254–263. [CrossRef] [Google Scholar]
  • SušnikBajec S., Pustovrh G., Jesenšek D., Snoj A., 2015, Population genetic SNP analysis of marble and brown trout in a hybridization zone of the Adriatic watershed in Slovenia. Biol. Conserv. 184, 239–250. [CrossRef] [Google Scholar]
  • Takezaki N., Nei M., Tamura K., 2010, POPTREE2: Software for Constructing Population Trees from Allele Frequency Data and Computing Other Population Statistics with Windows Interface. Mol. Biol. Evol. 27, 747–752. [CrossRef] [PubMed] [Google Scholar]
  • Thaulow J., Borgstrøm R., Heun M., 2012, Brown trout population structure highly affected by multiple stocking and river diversion in a high mountain national park. Conserv. Genet. 14, 145–158. [CrossRef] [Google Scholar]
  • Thaulow J., Borgstrøm R., Heun M., 2014, Genetic persistence of an initially introduced brown trout (Salmo trutta L.) population despite restocking of foreign conspecifics. Ecol. Freshwater Fish 23, 485–497. [CrossRef] [Google Scholar]
  • Turek K.C., Pegg M.A., Pope K.L., Schainost S., 2016, Potential population and assemblage influences of non-native trout on native nongame fish in Nebraska headwater streams. Ecol. Freshwater Fish 25, 99–108. [CrossRef] [Google Scholar]
  • Utter F., Aebersold P., Winans G., 1987, Interpreting genetic variation detected by electrophoresis. In: Ryman N., Utter F. (Eds.), Population Genetics and Fishery Management, Sea Grant Program/University of Washington Press, Seattle and London, pp. 21–46. [Google Scholar]
  • Valiquette E., Perrier C., Thibault I., Bernatchez L., 2014, Loss of genetic integrity in wild lake trout populations following stocking: insights from an exhaustive study of 72 lakes from Quebec, Canada Evol. Appl. 7, 625–644. [Google Scholar]
  • Vigilano P.H., Fabian M., Aquaculture M., 2007, Salmonid introductions in Patagonia: A mixed blessing. Ecological and genetic implications of aquaculture activities. Reviews: Methods and Technologies in Fish Biology and Fisheries, 6, 315–331. [CrossRef] [Google Scholar]
  • Ward R.D., 2006, The importance of identifying spatial population structure in restocking and stock enhancement programmes. Fish. Res. 80, 9–18. [CrossRef] [Google Scholar]
  • Wąs A.,Bartel R., Wenne R., 2004, Molecular characteristics of sea trout populations in Poland: implications for stocking. Arch. Pol. Fish. 12, 253–266. [Google Scholar]
  • Wąs A.,Bernaś R., 2016, Long-term and seasonal genetic differentiation in wild and enhanced stocks of sea trout (Salmo trutta m. trutta L.) from the Vistula River, in the southern Baltic - management implications. Fish. Res. 175, 57–65. [CrossRef] [Google Scholar]
  • Wąs A. Wenne R, 1998, Microsatellites as molecular markers are useful tools in fishery and aquaculture. Rap. Mor. Inst. Ryb. 1997, 37–47. [Google Scholar]
  • Wąs A., Wenne R., 2002, Genetic differentiation in hatchery and wild sea trout (Salmo trutta) in the Southern Baltic at microsatellite loci. Aquaculture 204, 493–506. [CrossRef] [Google Scholar]
  • Wąs A., Wenne R., 2003 Microsatellite DNA polymorphism in intensely enhanced populations of sea trout (Salmo trutta) in the Southern Baltic. Mar Biotechnol. 5, 234–243. [CrossRef] [Google Scholar]
  • Weir B.S., 1996 Genetic Data Analysis II: Methods for Discrete Population Genetic Data, Sinauer Press, Sunderland, Massachusetts. [Google Scholar]
  • Weir B.S., Cockerham C.C., 1984 Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370. [CrossRef] [PubMed] [Google Scholar]
  • Wenne R., 1992, Enzyme electrophoretic variation of the coot clam (Mulinia lateralis, Bivalvia) along the Atlantic coast of the USA. Genetica Polonica 33, 131–139. [Google Scholar]
  • Wenne R., Łuczyński M., Bartel R., 2000, Evaluation of possibilities of distinguishing sea trout populations in Poland using genetic methods. Stud. Mat. MIR Gdynia Ser. B 71, 11–19. [Google Scholar]
  • Wenne R., Boudry P., Hemmer-Hansen J., Lubieniecki K.P., Was A., Kause A. 2007, What role for genomics in fisheries management and aquaculture? Aquat. Living Resour 20, 241–255. [CrossRef] [EDP Sciences] [Google Scholar]
  • Wenne R., Handschuh L., Poćwierz-Kotus A., Urbaniak R,Formanowicz P., Całkiewicz J., Brzozowska K., Figlerowicz M., Wçgrzyn G., Wróbel B., 2011, The application of microarray technology to the identification of Tc1-like element sequences in fish genomes. Mar. Biol Res 7, 466–477. [CrossRef] [Google Scholar]
  • Włodarczyk E., Wenne R., 2001 Mitochondrial DNA variation in sea trout from coastal rivers in the southern Baltic region. ICES J. Mar. Sci. 58, 230–237. [CrossRef] [Google Scholar]
  • Włodarczyk E.,Butowska A., Wenne R., 1999, A study of polymorphism within growth hormon gene 2 in sea trout from Polish coastal rivers using heteroduplex analysis. Bull. Sea Res. Inst. 3, 57–61. [Google Scholar]
  • Woźnicki P., Jankun M., Kucharczyk D., Boron A., Łuczyński M., 1999, Cytogenetic characterization of sea trout (Salmo trutta) from Poland. Copeia 2, 501–505. [CrossRef] [Google Scholar]
  • Young K.A., Dunham J.B., Stephenson J.F., Terreau A., Thailly A.F., Gajardo G., Garcia de Leaniz C., 2010, A trial of two trouts: comparing the impacts of rainbow and brown trout on a native galaxiid. Anim. Conserv 13, 399–410. [CrossRef] [Google Scholar]
  • Żarnecki S., 1963, Występowanie populacji sezonowych u łososia atlantyckiego (Salmo salar L.) oraz u troci (Salmo trutta L.) w rzece Wiśle. Acta Hydrobiol 5, 255–294. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.