Free Access
Issue
Aquat. Living Resour.
Volume 28, Number 2-4, April-December 2015
Page(s) 119 - 126
DOI https://doi.org/10.1051/alr/2016005
Published online 30 March 2016
  • Aas E., Baussant T., Balk L., Liewenborg B., Andersen O.K., 2000, PAH metabolites in bile, cytochrome P4501A and DNA adducts as environmental risk parameters for chronic oil exposure: a laboratory experiment with Atlantic cod. Aquat. Toxicol. 51, 241–258. [CrossRef] [PubMed] [Google Scholar]
  • Binelli A., Cogni D., Parolini M., Provini A., 2010, Multi-biomarker approach to investigate the state of contamination of the R. Lambro/R. Po confluence (Italy) by zebra mussel (Dreissena polymorpha). Chemosphere 79, 518–528. [CrossRef] [PubMed] [Google Scholar]
  • Bonacci S., Corsi I., Chiea R., Regoli F., Focardi S., 2003, Induction of EROD activity in European eel (Anguilla anguilla) experimentally exposed to benzo[a]pyrene and β-naphthoflavone. Environment International 8, 467–473. [CrossRef] [Google Scholar]
  • Cappello T., Maisano M., D’Agata A., Natalotto A., Mauceri A., Fasulo S., 2013, Effects of environmental pollution in caged mussels Mytilus galloprovincialis. Mar. Environ. Res. 91, 52–60. [CrossRef] [PubMed] [Google Scholar]
  • Carr R.S., Linden O., 1984, Bioenergetic responses of Gammarus salinus and Mytilus edulis to oil and oil dispersants in a model ecosystem. Mar. Ecol. Prog. Ser. 19, 285–291. [CrossRef] [Google Scholar]
  • Ching E.W.K., Siu W.H.L., Lam P.K.S., Lihong Xu, Yongyuan Zhang, Bruce J.R., Rudolf S., Wu S., 2001, DNA adducts formation and DNA strand breaks in green-lipped mussels (Perna viridis) exposed to benzo[a]pyrene: dose-and time-dependent relationships. Mar. Poll. Bull. 42, 603–610. [CrossRef] [Google Scholar]
  • Cohen A.M., Nugegoda D., 2000, Toxicity of three oil spill remediation techniques to the Australian bass Macquaria novemaculeata. Ecotoxicol. Environ. Safety 47, 178–185. [CrossRef] [Google Scholar]
  • Cohen A.M., Nugegoda D., Gagnon M.M., 2001, The effect of different oil spill remediation techniques on petroleum hydrocarbon elimination in Australian bass (Macquaria novemaculeata). Arch. Environ. Contam. Toxicol. 40, 264–270. [CrossRef] [PubMed] [Google Scholar]
  • D’Agata A., Cappello T., Maisano M., Parrino V., Giannetto A., Brundo M.V., Ferrante M., Mauceri A., 2014, Cellular biomarkers in the mussel Mytilus galloprovincialis (Bivalvia: Mytilidae) from Lake Faro (Sicily, Italy). Ital. J. Zool. 81, 43–54. [CrossRef] [Google Scholar]
  • Da SilvaRocha A.J., Gomes V., Rocha M.J.D.A., Hasue F.M., Santos T.C.A., Bícego M.C., Taniguchi S., Van Ngan P., 2012a, EROD activity and genotoxicity in the seabob shrimp Xiphopenaeus kroyeri exposed to benzo[a] pyrene (BaP) concentrations. Environ. Toxicol. Pharmacol. 34, 995–1003. [CrossRef] [PubMed] [Google Scholar]
  • Dabrowska H., Kopko O., Góra A., Waszak I., Walkusz-Miotk J., 2014, DNA damage, EROD activity, condition indices, their linkages with contaminants in female flounder (Platichthys flesus) from the southern Baltic Sea. Sci. Total Environ. 496, 488–498. [CrossRef] [PubMed] [Google Scholar]
  • Delunardo F.A.C., de Carvalho L.R., Da Silva B.F., Galão M., Val A.L., Chippari-Gomes A.R., 2015, Seahorse (Hippocampus reidi) as a bioindicator of crude oil exposure. Ecotoxicol. Environ. Safety 117, 28–33. [CrossRef] [Google Scholar]
  • Fenech M., Chang W.P., Kirsch-Volders M., Holland N., Bonassi S., Zeiger E., 2003. HUMN project:Detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutation Res. 534, 65–75. [CrossRef] [Google Scholar]
  • Fingas M., 1995, oil spills and their clenup. Chemistry and Industry 24, 1005–1008. [Google Scholar]
  • Gagnon M.M., Holdway D.A., 1998, MFO induction in Atlantic salmon (Salmo salar) during and after exposure to Bass Strait crude oil. Australas. J. Ecotoxicol. 4, 29–35. [Google Scholar]
  • Gagnon M.M., Holdway D.A., 2000, EROD induction and biliary metabolite excretion following exposure to the water accommodated fraction of crude oil and to chemically dispersed crude oil. Arch. Environ. Eontam. Toxicol. 38, 70–77. [CrossRef] [Google Scholar]
  • Getter C.D., Baca B.J., 1984, A laboratory approach for determining the effects of oils and dispersants on mangroves: Oil Spill Chemical Dispersants. Research, Experience, Recommendations, STP 840, 5–13. [Google Scholar]
  • Goeptar A.R., Scheerens H., Vermeulen N.P., 1995, Oxygen and xenobiotic reductase activities of cytochrome P450. CRC Crit. Rev. Toxicol. 25, 25–65. [CrossRef] [PubMed] [Google Scholar]
  • Hamoutene D., Payne J.F., Rahimtula A., Lee K., 2002, Use of the Comet assay to assess DNA damage in hemocytes and digestive gland cells of mussels and clams exposed to water contaminated with petroleum hydrocarbons. Mar. Environ. Res. 54, 471–474. [CrossRef] [PubMed] [Google Scholar]
  • Harikrishnan Thilagam S.G.H.Q., 2010, 17β estradiol induced ROS generation, DNA damage and enzymatic responses in the hepatic tissue of Japanese sea bass. Ecotoxicology 19, 1258–1267. [CrossRef] [PubMed] [Google Scholar]
  • Hodson P.V., Kloepper-Sams P.J., Munkittrick K.R., Lockhart W.L., Metner D.A., Luxon L., Smith I.R., Gagnon M.M., Servos M., 1991, Protocols for measuring mixed function oxygenases of fish liver. Can. J. Fish. Aquatic Sci. 1829, 1–51. [Google Scholar]
  • Khan R.A., Payne J.F., 2005, Influence of a crude oil dispersant, Corexit 9527, and dispersed oil on capelin (Mallotus villosus), Atlantic cod (Gadus morhua), longhorn sculpin (Myoxocephalus octodecemspinosus), and cunner (Tautogolabrus adspersus). Bull. Environ. Contam. Toxicol. 75, 50–56. [CrossRef] [PubMed] [Google Scholar]
  • Lewis A., Aurand D., 1997, Putting dispersants to work: overcoming obstacles: International Oil Spill Conference Technical Report IOSC, pp. 157–164. [Google Scholar]
  • Livingstone D.R., Lemaire P., Matthews A., Peters L.D., Porte C., Fitzpatrick P.J., Förlin L., Nasci C., Fossato V., Wootton N., 1995, Assessment of the impact of organic pollutants on goby (Zosterisessor ophiocephalus) and mussel (Mytilus galloprovincialis) from the Venice Lagoon, Italy. biochemical studies. Mar. Environ. Res. 39, 235–240. [CrossRef] [Google Scholar]
  • Lyons M.C., Wong D., Mulder I., Lee K., Burridge L.E., 2011, The influence of water temperature on induced liver EROD activity in Atlantic cod (Gadus morhua) exposed to crude oil and oil dispersants. Ecotoxicol. Environ. Safety 74, 904–910. [CrossRef] [Google Scholar]
  • Nahrgang J., Camus L., Carls M.G., Gonzalez P., Jönsson M., Taban I.C., Bechmann R.K., Christiansen J.S., Hop H., 2010, Biomarker responses in polar cod (Boreogadus saida) exposed to the water soluble fraction of crude oil. Aquatic Toxicol. 97, 234–242. [CrossRef] [Google Scholar]
  • Neff J.M., Anderson J.W., 1975, An ultraviolet spectrophotometric method for the determination of naphthalene and alkylnaphthalenes in the tissues of oil-contaminated marine animals. Bull. Environ. Contam. Toxicol. 14, 122–128. [CrossRef] [PubMed] [Google Scholar]
  • Newbold R.F., Brookes P., 1976, Exceptional mutagenicity of benzo(a)pyrene diol epoxide in cultured mammalian cells. Nature 261, 52–54. [CrossRef] [PubMed] [Google Scholar]
  • Nogueira P., Lourenço J., Rodriguez E., Pacheco M., Santos C., Rotchell J.M., Mendo S., 2009, Transcript profiling and DNA damage in the European eel (Anguilla anguilla L.) exposed to 7, 12-dimethyl benz[a]anthracene. Aquat. Toxicol. 94, 123–130. [CrossRef] [PubMed] [Google Scholar]
  • Pacheco M., Santos M.A., 1998, Induction of Liver EROD and Erythrocytic Nuclear Abnormalities by Cyclophosphamide and PAHs in Anguilla anguilla. Ecotoxicol. Environ. Safety 40, 71–76. [CrossRef] [Google Scholar]
  • Pacheco M., Santos M.A., 2002, Naphthalene and β-naphthoflavone effects on Anguilla anguilla L. hepatic metabolism and erythrocytic nuclear abnormalities. Environment International 28, 285–293. [CrossRef] [PubMed] [Google Scholar]
  • Pérez-Cadahía B., Laffon B., Pásaro E., Méndez J., 2004, Evaluation of PAH bioaccumulation and DNA damage in mussels (Mytilus galloprovincialis) exposed to spilled Prestige crude oil. Comp. Biochem. Physiol. C 138, 453–460. [Google Scholar]
  • Pohl R.J., Fouts J.R., 1980, A rapid method for assaying the metabolism of 7-ethoxyresorufin by microsomal subcellular fractions. Anal. Biochem. 107, 150–155. [CrossRef] [PubMed] [Google Scholar]
  • Ramachandran S.D., Hodson P.V., Khan C.W., Lee K., 2004, Oil dispersant increases PAH uptake by fish exposed to crude oil. Ecotoxicol. Environ. Safety 59, 300–308. [CrossRef] [Google Scholar]
  • Ramachandran S.D., Sweezey M.J., Hodson P.V., Boudreau M., Courtenay S.C., Lee K., King T., Dixon J.A., 2006, Influence of salinity and fish species on PAH uptake from dispersed crude oil. Mar. Poll. Bull. 52, 1182–1189. [CrossRef] [Google Scholar]
  • Regoli F., Gorbi S., Frenzilli G., Nigro M., Corsi I., Focardi S., Winston G.W., 2002, Oxidative stress in ecotoxicology: from the analysis of individual antioxidants to a more integrated approach. Mar. Environ. Res. 54, 419–423. [CrossRef] [PubMed] [Google Scholar]
  • Rewitz K.F., Styrishave B., Løbner-Olesen A., Andersen O., 2006, Marine invertebrate cytochrome P450: emerging insights from vertebrate and insect analogies. Comp. Biochem. Physiol. C 143, 363–381. [Google Scholar]
  • Rice S.D., 1985, Effects of oil on fish, Petroleum effects in the arctic environment, Engelhardt, F.R, pp. 157–182. [Google Scholar]
  • Shugart L.R., 1998, Structural damage to DNA in response to toxicant exposure. Genet. Ecotoxicol. 151–167. [Google Scholar]
  • Singer M.M., Aurand D., Bragin G.E., Clark J.R., Coelho G.M., Sowby M.L., Tjeerdema R.S., 2000, Standardization of the preparation and quantitation of water-accommodated fractions of petroleum for toxicity testing. Mar. Poll. Bull. 40, 1007–1016. [CrossRef] [Google Scholar]
  • Snyder M.J., 1998, Cytochrome P450 enzymes belonging to the CYP4 family from marine invertebrates. Biochem. Biophys. Res. Commun. 249, 187–190. [CrossRef] [PubMed] [Google Scholar]
  • Taban I.C., Bechmann R.K., Torgrimsen S., Baussant T., Sanni S., 2004, Detection of DNA damage in mussels and sea urchins exposed to crude oil using comet assay. Mar. Environ. Res. 58, 701–705. [CrossRef] [PubMed] [Google Scholar]
  • Thilagam H., Gopalakrishnan S., Qu H.D., Bo J., Wang K.J., 2010, 17b estradiol induced ROS generation, DNA damage and enzymatic responses in the hepatic tissue of Japanese sea bass. Ecotoxicology 19, 1258–1267. [CrossRef] [PubMed] [Google Scholar]
  • Tice R.R., Agurell E., Anderson D., Burlinson B., Hartmann A., Kobayashi H., Miyamae Y., Rojas E., Ryu J.C., Sasaki Y.F., 2000, Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 35, 206–22 [CrossRef] [PubMed] [Google Scholar]
  • Valverde M., Rojas E., 2009, Environmental and occupational biomonitoring using the Comet assay. Mutation Res. 681, 93–109. [CrossRef] [Google Scholar]
  • Varanasi U., 1989, Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment, CRC Press. [Google Scholar]
  • Wake H., 2005, Oil refineries: a review of their ecological impacts on the aquatic environment. Estuarine, Coastal and Shelf Science, 62, 131–140. [Google Scholar]
  • Xiu M., Pan L., Jin Q., 2014, Bioaccumulation and oxidative damage in juvenile scallop Chlamys farreri exposed to benzo[a]pyrene, benzo fluoranthene and chrysene. Ecotoxicol. Environ. Safety 107, 103–110. [CrossRef] [Google Scholar]
  • Yanxia Tao L.P.H.Z., 2013, Assessment of the toxicity of organochlorine pesticide endosulfan in clams Ruditapes philippinarum. Ecotoxicol. Environ. Safety 93, 22–30. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.