Free Access
Issue
Aquat. Living Resour.
Volume 28, Number 1, January-March 2015
Page(s) 33 - 44
DOI https://doi.org/10.1051/alr/2015003
Published online 26 October 2015
  • Abdel-Tawwab M., Mousa M.A.A., Ahmad M.H., Sakr S.F.M., 2007, The use of calcium pre-exposure as a protective agent against environmental copper toxicity for juvenile Nile tilapia, Oreochromis niloticus (L). Aquaculture 264, 236–246. [CrossRef] [Google Scholar]
  • Adeyemo O.K., 2008, Histological Alterations Observed in the Gills and Ovaries of Clarias gariepinus exposed to environmentally relevant lead concentrations. J. Environ. Heal. 70, 48–51. [Google Scholar]
  • Alazemi B.M., Lewis J.W., Andrews E.B., 1996, Gill damage in the fresh water fish Gnathonemus petersii (family, Mormyridae) exposed to selected pollutants: an ultrastructural study. Environ. Technol. 17, 225–238. [CrossRef] [Google Scholar]
  • Anitha Susan T., Tilak K.S., 2003, Histopathological changes in the vital tissues of the fish Cirrhinus mrigala exposed to fenvalerate technical grade. Pollut. Res. 22, 179–184. [Google Scholar]
  • APHA, 1995, Standard methods for the examination of water and waste water. American Public Health Association, American Water Works Association, and Water Pollution Control Federation. 19th edition, Washington, D.C. [Google Scholar]
  • Arellano J.M., Storch V., Sarasquete C., 1999, Histological changes and copper accumulation in liver and gills of the Senegales sole, Solea senegalensis. Ecotoxicol. Environ. Saf. 44, 62–72. [CrossRef] [PubMed] [Google Scholar]
  • Au D.W.T., 2004, The application of histocytopathological biomarkers in marine pollution monitoring: a review. Mar. Pollut. Bull. 48, 817–834. [CrossRef] [PubMed] [Google Scholar]
  • Ballatori N., Boyer J.L., 1996, Disruption of cell volume regulation by mercuric chloride is mediated by an increase in sodium permeability and inhibition of an osmolyte channel in Skate hepatocytes. Toxicol. Appl. Pharmocol. 140, 404–410. [CrossRef] [Google Scholar]
  • Ba-Omar T.A., Al-Jardani S., Victor R., 2011, Effects of pesticide temephos on the gills of Aphanius dispar (Pisces: Cyprinodontidae). Tissue and Cell. 43, 29–38. [CrossRef] [Google Scholar]
  • Barlow C.G., Rodgers L.J., Palmer P.J., Longhurst C.J., 1993, Feeding habits of hatchery reared barramundi, Lates calcarifer (Bloch) fry, Aquaculture 103, 131–143. [CrossRef] [Google Scholar]
  • Bernet D., Schmidt H., Meier W., Brkhardt-Holm P., Wahli T., 1999, Histopathology in fish: Proposal for a protocol to assess aquatic pollution. J. Fish Dis. 22, 25–34. [CrossRef] [Google Scholar]
  • Biagianti-Risbourg S., Bastide J., 1995, Hepatic perturbations induced by a herbicide (atrazine) in juvenile grey mullet Liza ramada (Mugilidae, teleostei): an ultrastructural study. Aqua. Toxicol. 31, 217–229. [CrossRef] [Google Scholar]
  • Biagianti-Risbourg S., Pairault C., Vernet G., Boulekbache H., 1996, Effect of lindane on the ultrastructure of the liver of the rainbow trout, Oncorhynchus mykiss, sac-fry. Chemo. 33, 2065–2079. [CrossRef] [Google Scholar]
  • Blazer V.S., Fournie J.W., Wolf J.C., Wolfe M.J., 2007, Manual for the diagnostic analysis of proliferative liver and skin lesions in the brown bull head Ameiurus nebulosus. Pennsylvania Sea Grant/USGS Publication. [Google Scholar]
  • Braunbeck T., 1998, Cytological alterations in fish hepatocytes following in vivo and invitro sublethal exposure to xenobiotics structural biomarkers of environmental contamination. In: Braunbeck T., Streit B., Hinton D.E. (Eds.), Fish. Ecotoxicol. Birkhauser Verlag, Switzerland, pp. 61–140. [Google Scholar]
  • Braunbeck T., Burkhardt-Holm P., Gorge G., Nagel R., Negele R.D., Storch V., 1992, Rainbow trout and zebra fish, two models for continuous toxicity tests: relative sensitivity, species and organ specificity in cytopathologic reaction of liver and intestines to atrazine. Schriftenrver- wasser-Boden-Lufthyg. 89, 109–145. [Google Scholar]
  • Braunbeck T., Volkl A., 1991, Induction of biotransformation in the liver of Eel (Anguilla anguilla L.) by sublethal exposure to dinitro-o-cresol: ultrastructural and biochemical study. Ecot. Environ. Saf. 21, 109–127. [CrossRef] [Google Scholar]
  • Brown D.A., Bay S.M., Alfafara J.F., Hershelman G.P., Rosenthal K.D., 1984, Detoxification/toxification of cadmium in scorpionfish (Scorpaena guttata): acute exposure. Aquat. Toxicol. 5, 93–107. [CrossRef] [Google Scholar]
  • Bury N.R., Walker P.A., Glover C.N., 2003, Nutritive metal uptake in teleost fish. J. Exp. Biol. 206, 11–23. [CrossRef] [PubMed] [Google Scholar]
  • Carvalho C.S., Fernandes M.N., 2006, Effect of temperature on cop-per toxicity and hematological responses in the neotropical fish Prochilodus scrofaat low and high pH. Aqua. 251, 109–117. [CrossRef] [Google Scholar]
  • Cengiz E. I., Unlu E., 2002, Histopathological changes in the gills of mosquito fish, Gambusia affinis exposed to endosulfan. B. Environ. Contam. Toxicol. 68, 290–296. [Google Scholar]
  • Cengiz E.I., Unlu E., 2003, Histopathology of gills in mosquitofish, Gambusia affinis after long-term exposure to sublethal concentrations of malathion. J. Environ. Sci. Heal. 38, 581–589. [CrossRef] [Google Scholar]
  • Chen M.F., Apperson J.A., Marty G.D., Cheng, Y.W., 2006, Copper sulfate treatment decreases hatchery mortality of larval white sea bass, Atractoscion nobilis. Aquacultute 254, 102–114. [CrossRef] [Google Scholar]
  • Cheville N.F., 1994, Ultrastructural pathology: an introduction to interpretation, 490–615. Iowa State University Press, Ames, pp. 490–615 [Google Scholar]
  • Chris K.C., Wong M.H., 2000, Morphological and biochemical changes in the gills of tilapia (Oreochromis mossambicus) to ambient cadmium exposure. Aqua. Toxicol. 48, 517–527. [CrossRef] [Google Scholar]
  • Coutinho C., Gokhale K.S., 2000, Selected oxidative enzymes and histopathological changes in the gills of Cyprinus carpio and Oreochromis mossambicus cultures in secondary sewage effluent. Water Res. 34, 2997–3004. [CrossRef] [Google Scholar]
  • Dezfuli B.S., Simoni E., Giari L. Manera M., 2006, Efects of experimental terbuthylazine exposure on the cells of Dicentrarchus labrax (L.). Chemosphere 64, 1684–1694. [CrossRef] [PubMed] [Google Scholar]
  • Dutta H.M., Roy P.K., Singh N.K., Adhikari S., Munshi J.D., 1998, Effect of sublethal levels of malathion on the gills of Heteropneustes fossilis: Scanning electron microscopic study. J. Environ. Pathol. Toxicol. Oncol. 17, 51–63. [PubMed] [Google Scholar]
  • Evans D.H., 1987, The fish gill: site of action and model for toxic effects of environmental pollutants, Environ. Health Perspect. 71, 47–58. [CrossRef] [Google Scholar]
  • Fanta E., Lucchiari P.H., Bacila M., 1989, The effect of environmental oxygen and carbon dioxide levels on the tissue oxygenation and the behaviour of Antarctic fish. Comp. Biochem. Physiol. A93, 819–831. [CrossRef] [Google Scholar]
  • Fanta E., Luvizotto M.F., Meyer A.P., 1995, Gill structure of the Antartic fishes Notothenia (Gobionotothen) gibberifrons and Trematomus newnesi (Nototheniidae) stressed by salinity changes and some behavioral consequences. Antartic Record (Nankyoku Shiryô). 39, 25–39. [Google Scholar]
  • Fanta E.Rios F.S., Romao S., Vianna A.C.C., Freiberger S., 2003, Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food. Ecotoxicol. Environ. Saf. 54, 119–130. [Google Scholar]
  • Fanta Feoiloof E.D., de Brito Eiras R., Boscardim T., Lacerda Krambeck. M., 1986, Effect of salinity on the behavior and oxygen consumption of Mugil curema (Pisces, Mugilidae), Physiol. Behav. 35, 1029–1034. [CrossRef] [Google Scholar]
  • Fernandes M.N., Mazon A.F., 2003, Environmental pollution and fish gill morphology. In: A.L. Val, B.G. Kapoor (Eds.), Fish adaptations. Enfield, Science Pub. pp. 203–231. [Google Scholar]
  • Franchini A., Barbanti E., Bolognani Fantin A.M., 1991 Effects of lead on hepatocyte ultrastructure in Carassius carassius (L.) var.auratus. Tiss. Cell 23, 893–901. [CrossRef] [Google Scholar]
  • Gernhofer M., Pawet M., Schramm M., Müller E., Triebskorn R., 2001, Ultrastructural biomarkers as tools to characterize the health status of fish in contaminated streams. J. Aquat. Ecosyst. Stress. Recov. 8, 241–260. [CrossRef] [Google Scholar]
  • Goss G.G., Perry S.F., Wood C.M., Laurent P., 1992, Mechanisms of ion and acid-base regulation at the gills of fresh water fish. J. Expt. Zool. 263, 143–159. [CrossRef] [Google Scholar]
  • Gupta A.K., Rajbanshi V.K., 1982, Cytopathological studies resulting in cadmium bioassay with Heteropneustes fossilis (Bloch). Acta. Hydrochem. Hydrobiol. 10, 345–351. [CrossRef] [Google Scholar]
  • Haaparanta A., Valtonen E.T., Hoffman R.W., 1997, Gill anomalies of perch and roach from four lakes differing in water quality. J. Fish Biol. 50, 575–591. [CrossRef] [Google Scholar]
  • Hawkes J.W., 1980, The effect of xenobiotic on fish tissues: Morphological studies. Fed. Proc. 39, 3230–3236. [PubMed] [Google Scholar]
  • Heath A.G., 1985, Water pollution and fish physiology. Lewis Publishers, Boca Raton, Florida, USA. [Google Scholar]
  • Heath A.G., 1987, Water Pollution and Fish Physiology. CRC press, 245. Florida, USA. [Google Scholar]
  • Hinton D.E., Couch J.A., 1998, Architectural pattern, tissue and cellular morphology in livers of fishes: relationship to experimentally-induced neoplastic responses. E.X.S. 86, 141–164. [Google Scholar]
  • Hinton D.E., Lauren D.J., 1990, Liver structural alterations accompanying chronic toxicity in fishes potential biomarkers of exposure. In: McCarthy J.F., Shugart L.R. (Eds.) Biomarkers of environmental contamination. Lewis Publisheroca Raton, pp. 17–57. [Google Scholar]
  • Hinton D.M., Jessop J.J., Arnold A., 1987, Evaluation of immunotoxicity in a subchronic feeding study of triphenyl phosphate. Toxicol. Indust. Health 3, 71–89. [CrossRef] [Google Scholar]
  • Hinton D.E., Segner H., Braunbeck T., 2001, Toxic responses of the liver. In: Schlenk, D., Benson, W.H. (Eds.), Target Organ Toxicity in Marine and Fresh- water Teleosts, Taylor and Francis, London, pp. 224–268. [Google Scholar]
  • Jiraungkoorskul W., Sahaphong S., Kangwanrangsan N., 2007, Toxicity of copper in butterfish (Poronotus triacanthus): tissues accumulation and ultrastructural changes. Environ. Toxicol. 22, 92–100. [CrossRef] [PubMed] [Google Scholar]
  • Kailasam M., Thirunavukkarasu A.R., Sundaray J.K., Mathew A., Subburaj R., Thiagarajan G., Karaiyan K., 2006, Evaluation of different feeds for nursery rearing of Asian sea bass, Lates calcarifer (Bloch), Ind. J. Fish. 53, 185–190. [Google Scholar]
  • Kailasam M., Thirunavukkarasu A.R., Selvaraj S., Stalin P., 2007, Effect of delayed initial feeding on growth and survival of Asian sea bass, Lates calcarifer (Bloch), Aquaculture 271, 298–306. [CrossRef] [Google Scholar]
  • Kaland T., Andersen T., Hylland K., 1991, Accumulation and subcellular distribution of metals in the marine gastropod Nassarius reticulatus L. In: Dallinger R., Rainbow P.S. (Eds) Ecotoxicology of metals in invertebrates. Lewis Publishers, Boca Raton, 37–53. [Google Scholar]
  • Khidr M.B., Mekkawy I.A.A., 2008, Effect of separate and combined lead and selenium on the liver of the cichlid fish Oreochromis niloticus: ultrastructural study. Egypt. J. Zool. 50, 89–119. [Google Scholar]
  • Kotze, P.J. 1997, Aspects of water quality, metal contamination of sediments and fish in the Olifants River, Mpumalangi, M. Sc. theses, Rand Afrikaans University, South Africa, p. 157. [Google Scholar]
  • Lemaire-Gony S., Lemaire P., 1992, Interactive effects of cadmium and benzo(a)pyrene on cellular structure and biotransformation enzymes of the liver of the European eel, Anguilla anguilla. Aqua. Toxicol. 22, 145–160. [CrossRef] [Google Scholar]
  • Lemaire I., Yang H., Lafont V., Dornand J., Commes T., 1992, Ultra structural changes induced by Benzo (a) pyrene in sea bass (Dicentrachus labrax) liver and intestine: importance of the intoxication route. Environ. Res. 57, 59–72. [CrossRef] [PubMed] [Google Scholar]
  • Maharajan A., Rajalakshmi S., Vijayakumaran M., Kumarasamy P., 2012a, Sublethal effect of copper toxicity against histopathological changes in the spiny lobster, Panulirus homarus (Linnaeus, 1758). Biol. Trace Element Res. 145, 201–210. [CrossRef] [Google Scholar]
  • Maharajan A., Shanmugavel K., Paruruckmani P.S., 2012b, Biochemical changes in haemolymph of fresh water crab, Paratelphusa jacquemontii (Rathbun) exposed to copper. Int. J. Basic and Appl. Sci. 1(4), 421–428. [Google Scholar]
  • Maina J.N., 1990, A study of the morphology of die gills of an extreme alkalinity and hyperosmotic adapted teleost Oreochromis alcalicus grahami (Boulenger) with particular emphasis on the ultrastructure of the chloride cells and their modification with water dilution. A SEM and TEM Study. J. Anat. Embryol. 18, 83–98. [Google Scholar]
  • Maina J.N., 1991, A morphometric analysis of chloride cells in the gills of the teleosts Oreochromis alcalicus and O. niloticus and a description of presumptive urea excreting cells in Oreochromis alcalicus. J. Anat. London 175, 131–145. [Google Scholar]
  • Mallatt J., 1985, Fish gill structural changes induced by toxicants and other irritants, a statistical review. Can. J. Fish. Aquat. Sci. 42, 630–648. [CrossRef] [Google Scholar]
  • Martinez C.B.R., Nagae M.Y., Zaia C.T.B.V., Zaia D.A.M., 2004, Morphological and physiological acute effects of lead inthe neotropical fish Prochilodus lineatus. Bra. J. Biol. 64, 797–807. [CrossRef] [Google Scholar]
  • Matsuo A.Y.O., Wood C.M., Val A.L., 2005, Effects of copper and cadmium on ion transport and gill metal binding in the Amazonian teleost tambaqui (Colossoma macropomum) in extremely soft water. Aquat. Toxicol. 74, 351–364 [CrossRef] [PubMed] [Google Scholar]
  • Mazon A.F., Cerqueira C.C.C., Fernandes M.N., 2002, Gill cellular changes induced by copper exposure in the South American tropical fish Prochilodus scrofa. Environ. Res. Sec. 88, 52–63. [CrossRef] [Google Scholar]
  • McDonald D.G., Wood C.M., Rhem R.G., Mueller M.E., Mount D.R., Bergman H.L., 1991, Nature and time course of acclimation to aluminum in juvenile brook trout (Salvelinus fontinalis). I. Physiology. Can. J. Fish. Aquat. Sci. 48, 2006–2015. [CrossRef] [Google Scholar]
  • Meyers T.R., Hendricks J.D., 1985, Histopathology. In: Rand G.M., Petrocelli S.R. (Eds.), Fundamentals of aquatic toxicology, Hemisphere publishing corporation, New York 283–331. [Google Scholar]
  • Mohamed A.S., 2009, Histopathological Studies on Tilapia zillii and Solea vulgaris from Lake Qarun, Egypt Fatma. World J. Fish. Mar. Sci. 1, 29-39. [Google Scholar]
  • Mohan Raj V., Thirunavukkarasu A.R., Kailasam M., Muralidhar M., Subburaj, R., Stalin, P., 2013, Acute Toxicity Bioassays of Cadmium and Mercury on the Juveniles of Asian sea bass Lates calcarifer (Bloch). Ind. J. Sci. Technol. 6, 4329–4335. [Google Scholar]
  • Muthuwan V. 1998, Green Water Recirculation System for Intensive Marine Shrimp Culture. Ph.D. thesis, School of Environmental, Resource and Development, Asian Institute of Technology, pp. 91–120. [Google Scholar]
  • Nath K., Kumar N., 1989, Nickel-induced histopathological alterations in the gill architecture of a tropical fresh water perch, Colisa fasciatus (Bloch and Schn.). Sci. Total Environ. 80, 293–299. [CrossRef] [PubMed] [Google Scholar]
  • Neskovic N.K., Poleksic V., Elezovic I., Karan V., Budimir M., 1996, Biochemical and histopathological effects of glyphosate on carp (Cyprinus carpio). Bull. Environ. Contam. Toxicol. 56, 295–302. [CrossRef] [Google Scholar]
  • Oliveira Ribeiro, C.A., Pelletier, E., Pfeiffer, W.C., Rouleau, C., 2000, Comparative uptake, bioaccumulation, and gill damages of inorganic mercury in tropical and Nordic fresh water fish. Environ. Res. 83, 286–292. [CrossRef] [PubMed] [Google Scholar]
  • Pane E.F., Haque A., Wood C.M., 2004, Mechanistic analysis of acute, Ni-induced respiratory toxicity in the rainbow trout (Oncorhynchus mykiss): an exclusively branchial phenomenon. Aqua. Toxicol. 69, 11–24. [CrossRef] [Google Scholar]
  • Paruruckumani P.S., Maharajan A., Ganapiriya V., Narayanaswamy Y., Raja Jeyasekar R., 2015, Surface ultra structural changes in the gill and liver tissue of Asian sea bass, Lates calcarifer (Bloch) exposed to copper. Biol. Trace Element Res. DOI:10.1007/s12011-015-0370-z [Google Scholar]
  • Pawert M., Müller E., Triebskorn R., 1998, Ultrastructural changes in fish gills as biomarker to assess small stream pollution. Tissue Cell. 30, 617–626. [CrossRef] [PubMed] [Google Scholar]
  • Pfeiffer C.J., Qiu B., Cho C.H., 1997, Electron microscopic perspectives of gill pathology induced by 1-naphthyl- N-methylcarbamate in the goldfish (Carassius auratus Linnaeus). Hist. Histopathol. 12, 645–653. [Google Scholar]
  • Pinkney A.E., Harshbarger J.C., May E.B., Reichert W.L., 2004, Tumour prevalence and biomarkers of exposure and response in brown bullhead (Ameiurus nebulosus) from the Anacostia river, Washington, DC and Tuckahoe river, Maryland, USA. Environ. Toxicol. Chem. 323: 638–647. [CrossRef] [Google Scholar]
  • Poleksic V., Mitrovic-Tutundzic V., 1994, Fish gills as a monitor of sublethal and chronic effects of pollution. In: Müller, R. & R. Lloyd (Eds.). Sublethal and chronic effects of pollutants on fresh water fish. Oxford, Fishing News Books, pp. 339–352 [Google Scholar]
  • Rábago-Castro J.L., Sanchez J.G., Perez-Castaneda R., Gonzalez-Gonzalez A., 2006, Effects of the prophylactic use of Romet (R)-30 and copper sulfate on growth, condition and feeding indices in Channel catfish (Ictalurus punctatus). Aquaculture 253, 343–349. [CrossRef] [Google Scholar]
  • Randall D.J., 1982, The control of respiration and circulation in fish during exercise and hypoxia. J. Expt. Biol. 100, 275–288. [Google Scholar]
  • Rani U.A., Ramamurthi R., 1989, Histopathological alteration in the liver of fresh water teleost Tilapia mossambica in response to cadmium toxicity. Ecotoxicol. Environ. Saf. 17(2), 216–221. [CrossRef] [PubMed] [Google Scholar]
  • Rao, J.V., 2006, Toxic effects of novel organophosphorus insecticide (RPR-V) on certain biochemical parameters of euryhaline fish, Oreochromis mossambicus. Pestic. Biochem. Physiol. 86, 78–84. [Google Scholar]
  • Reid S.D., Mc Donald D.G., 1988, Effects of cadmium, copper and low pH on ion fluxes in the rainbow trout, Salmo gairdneri. Can. J. Fish. Aquat. Sci. 45, 244–253. [CrossRef] [Google Scholar]
  • Rigos G., Pavlidis M., Divanach P., 2001, Host susceptibility to Cryptocaryonsp. infection of Mediterranean marine brood fish held under intensive culture conditions: a case report. Bull. Eur. Assoc. Fish Pathol. 21, pp. 33–36. [Google Scholar]
  • Roberts R.J., Rodger H.D., 2001, Fish pathology. The pathophysiology and systematic pathology of teleosts. In: Roberts R.J. (Ed). Saunders Publishing, London, 55–133. [Google Scholar]
  • Rosety Rodriguez, M., Ordoez, F. J., Rosety, M., Rosety, J. M., Ribelles, A., Carrasco, C., 2002, Morpho-histochemical changes in the gills of turbot, Scophthalmus maximus L., induced by sodium dodecyl sulfate. Ecotoxicol. Environ. Saf. 51, 223–228. [CrossRef] [PubMed] [Google Scholar]
  • Santhakumar M., Balaji M., Ramudu K., 2001, Gill lesions in the perch, Anabas testudineus, exposed to monocrotophos. J. Environ. Biol. 22, 87–90. [PubMed] [Google Scholar]
  • Saravana Bhavan P., Geraldine P., 2000, Histopathology of the hepatopancreas and gills of the prawn Macrobrachium malcolmsonii exposed to endosulfan. Aqua. Toxicol. 50, 331–339. [CrossRef] [Google Scholar]
  • Sastry K.V., Subhadra K., 1982, Effect of cadmium on some aspects of carbohydrate metabolism in a freshwater catfish, Heteropneustes fossilis, Toxicol. Lett. 14, 45–55. [Google Scholar]
  • Sastry K.V., Subhadra K., 1985, In vivo effects of cadmium on some enzyme activities in tissues of the fresh water cat fish Heteropneustes fossilis. Environ. Res. 36, 32–45. [Google Scholar]
  • Seeliger, U., Knak, R., 1982, Estuarine metal monitoring in southern Brazil. Mar. Pollut. Bull. 13, 253–254. [CrossRef] [Google Scholar]
  • Skidmore J.F., Tovell P.W.A., 1972, Toxic effects of zinc sulphate on the gills of rainbow trout. Water Res. 6, 217–230. [CrossRef] [Google Scholar]
  • Szarek J., Siwicki A., Andrzejewska A., Terechmajewska E., Banaszkiewicz T., 2000, Effects of the herbicide Round up on the ultrastructural pattern of hepatocytes in carp (Cyprinus carpio). Mar. Environ. Rese. 50, 263–266. [CrossRef] [Google Scholar]
  • Takashima F. and Hibya T. 1995, An atlas of fish histology: normal and pathological features, 2nd ed. Kodansha, Tokyo. [Google Scholar]
  • Teh, S.J., Adams, S.M., Hinton, D.E., 1997, Histopathological biomarkers in feral fresh water fish populations exposed to different types of contaminant stress. Aqua. Toxicol. 37, 51–70. [CrossRef] [Google Scholar]
  • Thophon S., Kruatrache M., Upatham E. S., Pokethitiyook P., Sahaphong S., Jaritkhuan, S., 2003, Histopathological alterations of white sea bass Lates calcarifer, in acute and subchronic cadmium exposure. Environ. Pollut. 121, 307–320. [CrossRef] [PubMed] [Google Scholar]
  • Thophon S., Pokethitiyook P., Chalermwat K., Upatham E.S., Sahaphong S., 2004, Ultrastructural alterations in the liver and kidney of white sea bass, Lates calcarifer, in acute and subchronic cadmium exposure. Environ. Toxicol. 19(1), 11–19. [Google Scholar]
  • Tilak K.S., Koteswara Rao D., Veeraiah K., 2005, Effects of chloropyrifos on histopathology of fish Catla catla. J. Ecotoxicol. Environ. Monit. 15, 127–140. [Google Scholar]
  • Wani G.P., Latey A.N., 1983, Toxic effects of cadmium on the liver of a fresh water teleost, Garra mullaya (Sykes). Curr. Sci. 52, 1034–1035. [Google Scholar]
  • Wood C.M., 1992, Flux measurements as indices of H+ and metal effects on fresh water fish. Aqua. Toxicol. 22, 239–264. [CrossRef] [Google Scholar]
  • Wood C.M., Soivio A., 1991, Environmental effects on gill function: An Intro. Physiol. Zool. 64, 1–3. [Google Scholar]
  • Yamawaki, K., Hashimoto, W., Fujii Koyama, J., Ikeda, Y., Osaki, H., 1986, Haematological changes in carp exposed to low cadmium concentrations. Bull. J. Soc. Fish. 52, 459–466. [CrossRef] [Google Scholar]
  • Khoshnood Z., Khodabandeh S., Mohsen Shahryari., Moghaddam Saeedeh., Mosafer Khorjestan., 2011, Histopathological and Pathomorphological Effects of Mercuric Chloride on the gills of Persian Sturgeon, Acipenser persicus fry. Int. J. Nat. Res. Mar. Sci. 1, 23–32. [Google Scholar]
  • Viarengo A., Lowe, D., Bolognesi C., Fabbri E., Koehler A. 2007, The Use of Biomarkers in Biomonitoring: a 2-tier Approach Assessing the Level of Pollutant-induced Stress Syndrome in Sentinel Organisms. Com. Biochem. Physio., 146 C, pp. 281–300 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.