Free Access
Issue
Aquat. Living Resour.
Volume 28, Number 1, January-March 2015
Page(s) 45 - 51
DOI https://doi.org/10.1051/alr/2015004
Published online 26 October 2015
  • Akcha F., Izuel C., Venier P., et al. 2000, Enzymatic biomarker measurement and study of DNA adduct formation in benzo. Aquat. Toxicol. 49, 269–287. [CrossRef] [PubMed] [Google Scholar]
  • Beyer J., Sandvik M., Hylland K., et al. 1996, Contaminant accumulation and biomarker responses in flounder (Platichthys flesus L.) and Atlantic cod (Gadus morhua L.) exposed by caging to polluted sediments in Sørfjorden, Norway. Aquat. Toxicol. 36, 75–98. [CrossRef] [Google Scholar]
  • Bo J., Gopalakrishnan S., Fan, D.Q., 2012, Benzo[a]pyrene modulation of acute immunologic responses in red Sea bream pretreated with lipopolysaccharide. Environ. Toxicol. 29, 517–525. [CrossRef] [PubMed] [Google Scholar]
  • Carlson E.A., Li Y., Zelikoff J.T. 2002, Exposure of Japanese medaka (Oryzias latipes) to benzo[a]pyrene suppresses immune function and host resistance against bacterial challenge. Aquat. Toxicol. 56, 289–301. [CrossRef] [PubMed] [Google Scholar]
  • Chen M.L., Qu J.Y., Liu Q.B., et al. 2008, Effects of tetrabromobisphenol A and pentabromophenol on the liver histological and ultra microstructure of Carassius auratus. J. Safety Environ. 8, 8–11. [Google Scholar]
  • Eberhart J., Coffing S.L., Anderson J.N., et al. 1992, The time-dependent increase in the binding of benzo[a]pyrene to DNA through (+)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide in primary rat hepatocyte cultures results from induction of cytochrome P450IA1 by benzo[a]pyrene treatment. Carcinogenesis 13, 297–301. [CrossRef] [PubMed] [Google Scholar]
  • Ferreira A.M., Vale C. 1998, PCB accumulation and alterations of lipids in two length classes of the oyster Crassostrea angulata and of the clam Ruditapes decussatus. Marine Environ. Res. 45, 259–268. [CrossRef] [Google Scholar]
  • Fitzpatrick P.J., Sheehan D., Livingstone D.R. 1995, Studies on isoenzymes of glutathione S-transferase in the digestive gland of Mytilus galloprovincialis with exposure to pollution. Marine Environ. Res. 39, 241–244. [CrossRef] [Google Scholar]
  • Gadagbui B.K., James M.O. 2000, Activities of affinity-isolated glutathione S-transferase (GST) from channel catfish whole intestine. Aquat. Toxicol. 49, 27–37. [CrossRef] [PubMed] [Google Scholar]
  • Gagnon M.M., Holdway D.A. 2000, EROD induction and biliary metabolite excretion following exposure to the water accommodated fraction of crude oil and to chemically dispersed crude oil. Archives Environ. Contamin. Toxicol. 38, 70–77. [CrossRef] [Google Scholar]
  • Gopalakrishnan S., Thilagam H., Huang W.B., et al. 2009, Immunomodulation in the marine gastropod Haliotis diversicolor exposed to benzo(a)pyrene. Chemosphere 75, 389–397. [CrossRef] [PubMed] [Google Scholar]
  • Gravato C., Santos M.A. 2002, Juvenile sea bass liver P450, EROD induction, and erythrocytic genotoxic responses to PAH and PAH-like compounds. Ecotoxicol. Environ. Safety 51, 115–127. [CrossRef] [Google Scholar]
  • Habig W.H., Pabst M.J., Jakoby W.B. 1974, Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139. [PubMed] [Google Scholar]
  • Huang, W., Wang, Z., Yan, W., 2012, Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments from Zhanjiang Bay and Leizhou Bay, South China. Marine Pollution Bulletin 64, 1962–1969. [CrossRef] [PubMed] [Google Scholar]
  • Jonsson E.M., Abrahamson A., Brunstrom B., et al. 2006, Cytochrome P4501A induction in rainbow trout gills and liver following exposure to waterborne indigo, benzo[a]pyrene and 3, 3’, 4, 4’, 5-pentachlorobiphenyl. Aquat. Toxicol. 79, 226–232. [CrossRef] [PubMed] [Google Scholar]
  • Kidd K.A., Hesslein R.H., Ross B.J., et al. 1998, Bioaccumulation of organochlorines through a remote freshwater food web in the Canadian Arctic. Environ. Pollution 102, 91–103. [CrossRef] [Google Scholar]
  • Lemaire P., Förlin L., Livingstone D.R. 1996, Responses of hepatic biotransformation and antioxidant enzymes to CYP1A-inducers (3-methylcholanthrene, β-naphthoflavone) in sea bass (Dicentrarchus labrax), dab (Limanda limanda) and rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 36, 141–160. [CrossRef] [Google Scholar]
  • Lisa L., Valerio M., Maria G.M. 2009, Biomarker responses in the crab Carcinus aestuarii to assess environmental pollution in the Lagoon of Venice (Italy). Ecotoxicology 18, 869–877. [CrossRef] [PubMed] [Google Scholar]
  • Munkittrick K.K., Blunt B.R., Leggett M., et al. 1995, Development of a sediment bioassay to determine bioavailability of PAHs to fish. J. Aquat. Ecosyst. Health 4, 169–181. [CrossRef] [Google Scholar]
  • Orbea A., Ortiz-Zarragoitia M., Solé M., et al. 2002, Antioxidant enzymes and peroxisome proliferation in relation to contaminant body burdens of PAHs and PCBs in bivalve molluscs, crabs and fish from the Urdaibai and Plentzia estuaries (Bay of Biscay). Aquat. Toxicol. 58, 75–98. [CrossRef] [PubMed] [Google Scholar]
  • Ortiz-Delgadoa J.B., Behrensb A., Segner H., et al. 2008, Tissue-specific induction of EROD activity and CYP1A protein in Sparus aurata exposed to B(a)P and TCDD. Ecotoxicol. Environ. Safety 69, 80–88. [CrossRef] [Google Scholar]
  • Pereira T.C., Ferreira R.A., Nogueira L., et al. 2010, Biochemical biomarkers in Oreochromis niloticus exposed to mixtures of benzo [a] pyrene and diazinon. Ecotoxicol. Environ. Safety 73, 858–863. [CrossRef] [Google Scholar]
  • Pohl R.J., Fouts J.R. 1980, A rapid method for assaying the metabolism of 7-ethoxyresorufin by microsomal subcellular fractions. Anal. Biochem. 107, 150–155. [CrossRef] [PubMed] [Google Scholar]
  • Ren Xianyun, Pan Luqing, Wang Lin, 2015. Toxic effects upon exposure to benzo[a]pyrene in juvenile white shrimp Litopenaeus vannamei. Environ. Toxicol. Pharmacol. 39, 194–207. [CrossRef] [PubMed] [Google Scholar]
  • Rey-Salgueiro, L., Costa, J., Ferreira, M., 2011, Evaluation of 3-hydroxy-benzo(a)pyrene levels in Nile Tilapia (Oreochromis niloticus) after waterborne exposure to Benzo(a)pyrene. Toxicol. Environ. Chem. 10, 2040–2054. [CrossRef] [Google Scholar]
  • Reynaud S., Deschaux P. 2006. The effects of polycyclic aromatic hydrocarbons on the immune system of fish: a review. Aquat. Toxicol. 77, 229–238. [CrossRef] [PubMed] [Google Scholar]
  • Santos M.A., Pacheco M., Ahmad I. 2004, Anguilla anguilla L. antioxidants responses to in situ bleached kraft pulp mill effluent outlet exposure. Environ. Int. 30, 301–308. [CrossRef] [PubMed] [Google Scholar]
  • Silva C., Oliveira C., Gravato C., et al. 2013, Behaviour and biomarkers as tools to assess the acute toxicity of benzo (a) pyrene in the common prawn Palaemon serratus. Marine Environ. Res. 90, 39–46. [CrossRef] [Google Scholar]
  • Sol E.M., Porte C., Albaig E.S.J. 2001, Hydrocarbons, PCBs and DDT in the NW Mediterranean deep-sea fish Mora moro. Deep Sea Research Part I: Oceanographic Research Papers 48, 495–513. [CrossRef] [Google Scholar]
  • Thomas J.P., Maiorino M., Ursini F., et al. 1990, Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. In situ reduction of phospholipid and cholesterol hydroperoxides. J. Biol. Chem. 265, 454–461. [Google Scholar]
  • van Oosterom J., Codi K.S., Negri A., et al. 2010, Investigation of the mud crab (Scylla serrata) as a potential bio-monitoring species for tropical coastal marine environments of Australia. Marine Pollution Bulletin 60, 283–290. [CrossRef] [PubMed] [Google Scholar]
  • Wang L., Pan L.Q., Liu N., et al. 2011, Biomarkers and bioaccumulation of clam Ruditapes philippinarum in response to combined cadmium and benzo[a]pyrene exposure. Food Chem. Toxicol. 49, 3407–3417. [CrossRef] [PubMed] [Google Scholar]
  • Walker C. H. 1998, The use of biomarkers to measure the interactive effects of chemicals. Ecotoxicol. Environ. Safety 40, 65–70. [CrossRef] [Google Scholar]
  • Xu Q.H., Liu Y. 2011, Gene expression profiles of the swimming crab Portunus trituberculatus exposed to salinity stress. Marine Biol. 158, 2161–2172. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.