Free Access
Aquat. Living Resour.
Volume 27, Number 2, April-June 2014
Page(s) 83 - 89
Published online 16 December 2014
  • Austin B., Zhang X., 2006, Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett. Appl. Microbiol. 43, 119–124. [CrossRef] [PubMed] [Google Scholar]
  • Bansemir A., Blume M., Schröder S., Lindequist U., 2006, Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture 252, 79–84. [CrossRef] [Google Scholar]
  • Bazes A., Silkina A., Defer D., Bernède-Bauduin C., Quéméner E., Braud J.-P., Bourgougnon N., 2006, Active substances from Ceramium botryocarpum used as antifouling products in aquaculture. Aquaculture 258, 664–674. [CrossRef] [Google Scholar]
  • Bhakuni D.S., Rawat D.S., 2005, Bioactive marine natural products. Springer, NY. [Google Scholar]
  • Bondad-Reantaso M.G., Subasinghe R.P., Arthur J.R., Ogawa K., Chinabut S., Adlard R., Tan Z., Shariff M., 2005, Disease and health management in Asian aquaculture. Vet. Parasitol. 132, 249–272. [CrossRef] [PubMed] [Google Scholar]
  • Bourgaud F., Gravot A., Milesi S., Gontier E., 2001, Production of plant secondary metabolites: a historical perspective. Plant Sci. 161, 839–851. [CrossRef] [Google Scholar]
  • Bradford M.M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. [CrossRef] [Google Scholar]
  • Caccamese S., Azzolina R., Furnari G., Cormaci M., Grasso S., 1980, Antimicrobial and antiviral activities of extracts from mediterranean algae. Bot. Mar. 23, 285–288. [Google Scholar]
  • Cardozo K.H., Guaratini T., Barros M.P., Falcão V.R., Tonon A.P., Lopes N.P., Pinto E., 2007, Metabolites from algae with economical impact. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 146, 60–78. [CrossRef] [Google Scholar]
  • Chaplin M.F., Kennedy J.F., 1994, Carbohydrate analysis: a practical approach. IRL Press. [Google Scholar]
  • Cox S., Abu-Ghannam N., Gupta S., 2010, An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int. Food Res. J. 17, 205–220. [Google Scholar]
  • Cronin G., Hay M.E., 1996, Susceptibility to herbivores depends on recent history of both the plant and animal. Ecology 77, 1531–1543. [CrossRef] [Google Scholar]
  • Cronin G., Paul V.J., Hay M.E., Fenical W., 1997, Are tropical herbivores more resistant than temperate herbivores to seaweed chemical defenses? Diterpenoid metobolites from Dictyota acutiloba as feeding deterrents for tropical versus temperate fishes and urchins. J. Chem. Ecol. 23, 289–302. [CrossRef] [Google Scholar]
  • Demetropoulos C., Langdon C., 2004, Pacific dulse (Palmaria mollis) as a food and biofilter in recirculated, land-based abalone culture systems. Aquac. Eng. 32, 57–75. [CrossRef] [Google Scholar]
  • Denis C., Morançais M., Gaudin P., Fleurence J., 2009, Effect of enzymatic digestion on thallus degradation and extraction of hydrosoluble compounds from Grateloupia turuturu. Bot. Mar. 52, 262–267. [Google Scholar]
  • Eguía E., Trueba A., 2007, Application of marine biotechnology in the production of natural biocides for testing on environmentally innocuous antifouling coatings. J. Coatings Techn. Res. 4, 191–202. [CrossRef] [Google Scholar]
  • FAO, 2013, Statistiques des pêches et de l’aquaculture, modules de requêtes en ligne. FAO Comput. Inf. Ser. Fish. [Google Scholar]
  • Freile-Pelegrin Y., Morales J.L., 2004, Antibacterial activity in marine algae from the coast of Yucatan, Mexico. Bot. Mar. 47, 140–146. [CrossRef] [Google Scholar]
  • Galland-Irmouli A.-V., Fleurence J., Lamghari R., Luçon M., Rouxel C., Barbaroux O., Bronowicki J.-P., Villaume C., Guéant J.-L., 1999, Nutritional value of proteins from edible seaweed Palmaria palmata (dulse). J. Nutr. Biochem. 10, 353–359. [CrossRef] [PubMed] [Google Scholar]
  • Garnier M., Labreuche Y., Garcia C., Robert M., Nicolas J.-L., 2007, Evidence for the involvement of pathogenic bacteria in summer mortalities of the Pacific oyster Crassostrea gigas. Microb. Ecol. 53, 187–196. [CrossRef] [PubMed] [Google Scholar]
  • Gay M., Renault T., Pons A.-M., Le Roux F., 2004, Two Vibrio splendidus related strains collaborate to kill Crassostrea gigas: taxonomy and host alterations. Dis. Aquat. Org. 62, 65–74. [CrossRef] [Google Scholar]
  • Genovese G., Faggio C., Gugliandolo C., Torre A., Spano A., Morabito M., Maugeri T.L., 2012, In vitro evaluation of antibacterial activity of Asparagopsis taxiformis from the Straits of Messina against pathogens relevant in aquaculture. Mar. Biol. Res. 73, 1–6. [Google Scholar]
  • Goecke F., Labes A., Wiese J., Imhoff J.F., 2010, Chemical interactions between marine macroalgae and bacteria. Mar. Ecol. Prog. Ser. 409, 267–300. [CrossRef] [Google Scholar]
  • Gupta S., Abu-Ghannam N., 2011, Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Tech. 22, 315–326. [CrossRef] [Google Scholar]
  • Hellio C., Bremer G., Pons A., Le Gal Y., Bourgougnon N., 2000, Inhibition of the development of microorganisms (bacteria and fungi) by extracts of marine algae from Brittany, France. Appl. Microbiol. Biotechnol. 54, 543–549. [CrossRef] [PubMed] [Google Scholar]
  • Hellio C., De La Broise D., Dufossé L., Le Gal Y., Bourgougnon N., 2001, Inhibition of marine bacteria by extracts of macroalgae: potential use for environmentally friendly antifouling paints. Mar. Environ. Res. 52, 231–247. [CrossRef] [PubMed] [Google Scholar]
  • Holmström K., Gräslund S., Wahlström A., Poungshompoo S., Bengtsson B.E., Kautsky N., 2003, Antibiotic use in shrimp farming and implications for environmental impacts and human health. Int. J. Food. Sci. Technol. 38, 255–266. [CrossRef] [Google Scholar]
  • Hornsey I., Hide D., 1974, The production of antimicrobial compounds by British marine algae I. Antibiotic-producing marine algae. Br. Phycol. J. 9, 353–361. [CrossRef] [Google Scholar]
  • Hornsey I., Hide D., 1976, The production of antimicrobial compounds by British marine algae II. Seasonal variation in production of antibiotics. Br. Phycol. J. 11, 63–67. [Google Scholar]
  • Huchette S., Clavier J., 2004, Status of the ormer (Haliotis tuberculata L.) industry in Europe. J. Shellfish Res. 23, 951–956. [Google Scholar]
  • Hudson J.B., Kim J.H., Lee M.K., DeWreede R.E., Hong Y.K., 1998, Antiviral compounds in extracts of Korean seaweeds: Evidence for multiple activities. J. Appl. Phycol. 10, 427–434. [CrossRef] [Google Scholar]
  • Jiang H.-F., Liu X.-L., Chang Y.-Q., Liu M.-T., Wang G.-X., 2013, Effects of dietary supplementation of probiotic Shewanella colwelliana WA64, Shewanella olleyana WA65 on the innate immunity and disease resistance of abalone, Haliotis discus hannai Ino. Fish Shellfish Immunol. 35, 86–91. [CrossRef] [PubMed] [Google Scholar]
  • Kesarcodi-Watson A., Kaspar H., Lategan M.J., Gibson L., 2008, Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274, 1–14. [CrossRef] [Google Scholar]
  • Kumar K.A., Rengasamy R., 2000, Antibacterial activities of seaweed extracts/fractions obtained through a TLC profile against the phytopathogenic bacterium Xanthomonas oryzae pv. oryzae. Bot. Mar. 43, 417–421. [Google Scholar]
  • Lacoste A., Jalabert F., Malham S., Cueff A., Gelebart F., Cordevant C., Lange M., Poulet S., 2001, A Vibrio splendidus strain is associated with summer mortality of juvenile oysters Crassostrea gigas in the Bay of Morlaix (North Brittany, France). Dis. Aquat. Org. 46, 139–145. [CrossRef] [PubMed] [Google Scholar]
  • LeGall L., Deniaud E., Rusig A.-M., 2004, Etude de la phenologie de la reproduction de la Rhodophyceae Palmaria palmata le long des cotes francaises de la Manche. Cah. Biol. Mar. 45, 269–275. [Google Scholar]
  • Mabeau S., Fleurence J., 1993, Seaweed in food products: biochemical and nutritional aspects. Trends Food Sci. Technol. 4, 103–107. [CrossRef] [Google Scholar]
  • Mai K., Mercer J.P., Donlon J., 1995, Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino. IV. Optimum dietary protein level for growth. Aquaculture 136, 165–180. [Google Scholar]
  • Martí R., Uriz M.J., Ballesteros E., Turon X., 2004, Benthic assemblages in two Mediterranean caves: species diversity and coverage as a function of abiotic parameters and geographic distance. J. Mar. Biol. Assoc. 84, 557–572. [CrossRef] [Google Scholar]
  • Mata L., Wright E., Owens L., Paul N., De Nys R., 2013, Water-soluble natural products from seaweed have limited potential in controlling bacterial pathogens in fish aquaculture J. Appl. Phycol. 25(6), 1963–1973. [CrossRef] [Google Scholar]
  • Morgan K., Simpson F., 1981, Cultivation of Palmaria palmata (Rhodymenia): Effect of high concentrations of nitrate and ammonium on growth and nitrogen uptake. Aquat. Bot. 11, 167–171. [CrossRef] [Google Scholar]
  • Morgan K., Wright L., Simpson F., 1980, Review of chemical constituents of the red alga Palmaria palmata (dulse). Econ. Bot. 34, 27–50. [Google Scholar]
  • Munier M., Dumay J., Morançais M., Jaouen P., Fleurence J., 2013, Variation in the biochemical composition of the edible seaweed Grateloupia turuturu Yamada harvested from two sampling sites on the Brittany coast (France): The influence of storage method on the extraction of the seaweed pigment R-phycoerythrin. J. Chem. 2013, 8. [Google Scholar]
  • Nicolas J.-L., Basuyaux O., Mazurie J., Thebault A., 2002, Vibrio carchariae, a pathogen of the abalone Haliotis tuberculata. Dis. Aquat. Org. 50, 35–43. [Google Scholar]
  • Paillard C., 2004a, A short-review of brown ring disease, a vibriosis affecting clams, Ruditapes philippinarum and Ruditapes decussatus. Aquat. Living. Resour. 17, 467–475. [CrossRef] [EDP Sciences] [Google Scholar]
  • Paillard C., Le Roux F., Borrego J.J., 2004b, Bacterial disease in marine bivalves, a review of recent studies: trends and evolution. Aquat. Living. Resour. 17, 477–498. [Google Scholar]
  • Paillard C., Korsnes K., Le Chevalier P., Le Boulay C., Harkestad L.S., Eriksen A.G., Willassen E., Bergh Ø., Bovo C., Skår C.K., 2008, Vibrio tapetis-like strain isolated from introduced Manila clams Ruditapes philippinarum showing symptoms of brown ring disease in Norway. Dis. Aquat. Org. 81, 153–161. [CrossRef] [Google Scholar]
  • Pang S., Xiao T., Shan T., Wang Z., Gao S., 2006, Evidences of the intertidal red alga Grateloupia turuturu in turning Vibrio parahaemolyticus into non-culturable state in the presence of light. Aquaculture 260, 369–374. [CrossRef] [Google Scholar]
  • Plouguerné E., 2006, Etude écologique et chimique de deux algues introduites sur les côtes bretonnes, Grateloupia turuturu Yamada et Sargassum muticum (Yendo) Fensholt : nouvelles ressources biologiques de composés à activité antifouling. Thèse dr chimie marine, Université de Bretagne Occidentale, Brest. [Google Scholar]
  • Plouguerné E., Kikuchi H., Oshima Y., Deslandes E., Stiger-Pouvreau V., 2006, Isolation of cholest-5-en-3-ol formate from the red alga Grateloupia turuturu Yamada and its chemotaxonomic significance. Biochem. Syst. Ecol. 34, 714–717. [CrossRef] [Google Scholar]
  • Plouguerné E., Hellio C., Deslandes E., Veron B., Stiger-Pouvreau V., 2008, Anti-microfouling activities in extracts of two invasive algae: Grateloupia turuturu and Sargassum muticum. Bot. Mar. 51, 202–208. [Google Scholar]
  • Prado S., Romalde J.L., Barja J.L., 2010, Review of probiotics for use in bivalve hatcheries. Vet. Microbiol. 145, 187–197. [CrossRef] [PubMed] [Google Scholar]
  • Rosen G., Langdon C.J., Evans F., 2000, The nutritional value of Palmaria mollis cultured under different light intensities and water exchange rates for juvenile red abalone Haliotis rufescens. Aquaculture 185, 121–136. [CrossRef] [Google Scholar]
  • Simon-Colin C., Kervarec N., Pichon R., Bessières M.-A., Deslandes E., 2002, Characterization of N-methyl-L-methionine sulfoxide and isethionic acid from the red alga Grateloupia doryphora. Phycol. Res. 50, 125–128. [CrossRef] [Google Scholar]
  • Simon C., Gall E.A., Deslandes E., 2001, Expansion of the red alga Grateloupia doryphora along the coasts of Brittany (France). Hydrobiologia 443, 23–29. [CrossRef] [Google Scholar]
  • Travers M.-A., Basuyaux O., Le Goïc N., Huchette S., Nicolas J.-L., Koken M., Paillard C., 2009, Influence of temperature and spawning effort on Haliotis tuberculata mortalities caused by Vibrio harveyi: an example of emerging vibriosis linked to global warming. Global Change Biol. 15, 1365–1376. [Google Scholar]
  • Val A., Platas G., Basilio A., Cabello A., Gorrochategui J., Suay I., Vicente F., Portillo E., Río M., Reina G., 2001, Screening of antimicrobial activities in red, green and brown macroalgae from Gran Canaria (Canary Islands, Spain). Int. Microbiol. 4, 35–40. [PubMed] [Google Scholar]
  • Vlachos V., Critchley A., von Holy A., 1998, Antimicrobial activity of extracts from selected southern African marine macroalgae. South Afr. J. Sci. 93, 328–332. [Google Scholar]
  • Wang T., Jónsdóttir R., Kristinsson H.G., Hreggvidsson G.O., Jónsson J.O., Thorkelsson G., Ólafsdóttir G., 2010, Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata. Food Sci. Technol. 43, 1387–1393. [Google Scholar]
  • Wang Y.-B., Li J.-R., Lin J., 2008, Probiotics in aquaculture: challenges and outlook. Aquaculture 281, 1–4. [CrossRef] [Google Scholar]
  • Wu C.-J., Wang H., Chan Y.-L., Li T.-L., 2011, Passive immune-protection of small abalone against Vibrio alginolyticus infection by anti-Vibrio IgY-encapsulated feed. Fish Shellfish Immunol. 30, 1042–1048. [CrossRef] [PubMed] [Google Scholar]
  • Yates J., Peckol P., 1993, Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus vesiculosus. Ecology 1757–1766. [Google Scholar]
  • Zhang X.H., Austin B., 2000, Pathogenicity of Vibrio harveyi to salmonids. J. Fish Dis. 23, 93–102. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.