Free Access
Issue
Aquat. Living Resour.
Volume 27, Number 2, April-June 2014
Page(s) 51 - 62
DOI https://doi.org/10.1051/alr/2014006
Published online 06 November 2014
  • Amundsen P.-A., Damsgard B., Arnesen A.M., Jobling M., Jorgensen E.H., 1995, Experimental evidence of cannibalism and prey specialization in Arctic charr, Salvelinus alpinus. Environ. Biol. Fishes 43, 285–293. [CrossRef] [Google Scholar]
  • AOAC International, 1995, Official Methods of Analysis of AOAC International. Arlington VA, AOAC International. [Google Scholar]
  • Atse B.C., Konan K.J., Alla Y.L., Pangini K., 2009, Effect of rearing density and feeding regimes on growth and survival of African catfish Heterobranchus longifilis (Valenciennes, 1840) larvae in a closed recirculating aquaculture system. J. Appl. Aquac. 21, 193–195. [Google Scholar]
  • Azaza M.S., Dhraief M.N., Kraiem M.M., Baras E., 2010, Influences of food particle size on growth, size heterogeneity, food intake and gastric evacuation in juvenile Nile tilapia, Oreochromis niloticus L., 1758. Aquaculture 309, 193–202. [CrossRef] [Google Scholar]
  • Baras E., 1999, Sibling cannibalism among juvenile vundu under controlled conditions: I. Cannibalistic behaviour, prey selection and prey size selectivity. J. Fish Biol. 54, 82–105. [CrossRef] [Google Scholar]
  • Baras E., 2013, Cannibalism in fish larvae: what have we learned? In: Qin J.G. (Ed.), Larval Fish Aquaculture. New York: Nova Publishers, pp. 167–199. [Google Scholar]
  • Baras E., Hafsaridewi R., Slembrouck J., Priyadi A., Moreau Y., Pouyaud L., Legendre M., 2010, Why is cannibalism so rare among cultured larvae and juveniles of Pangasius djambal ? Morphological, behavioural and energetic answers. Aquaculture 305, 42–51. [CrossRef] [Google Scholar]
  • Baras E., Hafsaridewi R., Slembrouck J., Priyadi A., Moreau Y., Pouyaud L., 2013, Do cannibalistic fish possess an intrinsic higher growth capacity than others? A case study in the Asian redtail catfish Hemibagrus nemurus (Valenciennes, 1840). Aquac. Res. 45, 68–79. [CrossRef] [Google Scholar]
  • Baras E., Jobling M., 2002, Dynamics of intracohort cannibalism in cultured fish. Aquac. Res. 33, 461–479. [CrossRef] [Google Scholar]
  • Baras E., Lucas M.C., 2010, Individual growth trajectories of sibling Brycon moorei raised in isolation, and their relationship with aggressive behavior. J. Fish Biol. 77, 985–997. [CrossRef] [PubMed] [Google Scholar]
  • Baras E., Ndao M., Maxi M.Y.J., Jeandrain D., Thomé J.P., Vandewalle P., Mélard C., 2000, Sibling cannibalism in dorada under experimental conditions. I. Ontogeny, dynamics, bioenergetics of cannibalism and prey selectivity. J. Fish Biol. 57, 1001–1020. [Google Scholar]
  • Baras E., Silva del Aguila D.V., Montalvan Naranjos G.V., Dugué R., Chu Koo F., Duponchelle F., Renno J.F., Garcia-Dávila C., Nuñez J., 2011, How many meals a day to minimize cannibalism when rearing larvae of the Amazonian catfish Pseudoplatystoma punctifer? The cannibal’s point of view. Aquat. Living Resour. 24, 379–390. [CrossRef] [EDP Sciences] [Google Scholar]
  • Baras E., Tissier F., Philippart J.-C., Mélard C., 1999, Sibling cannibalism among juvenile vundu under controlled conditions. II. Effect of body weight and environmental variables on periodicity and the intensity of type II cannibalism. J. Fish Biol. 54, 106–118. [Google Scholar]
  • Brabrand A., 1995, Intracohort cannibalism among larval stages of perch (Perca fluviatilis). Ecol. Freshw. Fish 4, 70–76. [CrossRef] [Google Scholar]
  • Canale R.P., Breck J.E., 2013, Comments on proper (and improper) solutions of bioenergetic equations for modelling fish growth. Aquaculture 404-405, 41–46. [CrossRef] [Google Scholar]
  • Checkley D.M. Jr., 1984, Relation of growth to ingestion for larvae of Atlantic herring Clupea harengus and other fish. Mar. Ecol. Prog. Ser. 18, 215–224. [CrossRef] [Google Scholar]
  • Croy M.I., Hughes R.N., 1991, The role of learning and memory in the feeding behaviour of the fifteen-spined stickleback (Spinachia spinachia L.). Anim. Behav. 41, 161–170. [CrossRef] [Google Scholar]
  • Cunha I., Planas M., 1999. Optimal prey size for early turbot larvae (Scophthalmus maximus L.) based on mouth and ingested prey size. Aquaculture 176, 103–110. [CrossRef] [Google Scholar]
  • Dos Santos J., Burkow I.C., Jobling M., 1993, Patterns of growth and lipid deposition in cod (Gadus morhua L.) fed natural prey and fish based feeds. Aquaculture 110, 173–189. [CrossRef] [Google Scholar]
  • Emlen J.M. 1966, The role of time and energy in food preferences. Am. Nat. 100, 611–617. [CrossRef] [Google Scholar]
  • Folkvord A., 1997, Ontogeny of cannibalism in larval and juvenile fishes with special emphasis on Atlantic cod. In: Chambers R.C., Trippel E.A. (Eds.), Early Life History and Recruitment in Fish Populations. London: Chapman and Hall, pp. 251–278. [Google Scholar]
  • Folkvord A., Otterå H., 1993, Effects of initial size distribution, day length, and feeding frequency on growth, survival and cannibalism in juvenile Atlantic cod (Gadus morhua L.). Aquaculture 114, 243–260. [CrossRef] [Google Scholar]
  • Giacomini H.C., Shuter B.J., Lester N.P., 2013, Predator bioenergetics and the prey size spectrum: Do foraging costs determine fish production? J. Theor. Biol. 332, 249–260. [CrossRef] [Google Scholar]
  • Gillen A.L., Stein R.A., Carline R.F., 1981, Predation by pellet-reared tiger muskellunge on minnows and bluegills in experimental systems. Trans. Am. Fish. Soc. 110, 197–209. [CrossRef] [Google Scholar]
  • Gilles S., Dugué R., Slembrouck J., 2001, Manuel de production d’alevins du silure africain Heterobranchus longifilis. Paris, Maisonneuve and Larose. [Google Scholar]
  • Godin J.-G.J., 1978, Behavior of juvenile pink salmon (Oncorhynchus gorbuscha Walbaum) toward novel prey: influence of ontogeny and experience. Environ. Biol. Fishes 3, 261–266. [CrossRef] [Google Scholar]
  • Goldan O., Popper D., Karplus I., 1997, Management of size variation in juvenile gilthead seabream (Sparus aurata) I: particle size and frequency of feeding dry and live food. Aquaculture 152, 181–190. [CrossRef] [Google Scholar]
  • Hart P.J.B., Hamrin S.F., 1990, The role of behaviour and morphology in the selection of prey by pike. In: Hughes R.N. (Ed.), Behavioural Mechanisms of Food Selection. Berlin: Springer-Verlag, pp. 219–233. [Google Scholar]
  • Hasan M.R., Macintosh, D.J., 2008, Optimum food particle size in relation to body size of common carp, Cyprinus carpio L., fry. Aquac. Res. 23, 315–325. [CrossRef] [Google Scholar]
  • Hecht T., Appelbaum S., 1988, Observations on intraspecific aggression and coeval sibling cannibalism by larval and juvenile Clarias gariepinus (Clariidae: Pisces) under controlled conditions. J. Zool. (London) 214, 21–44 [CrossRef] [Google Scholar]
  • Hecht T., Oellermann L., Verheust L., 1996, Perspectives on clariid culture in Africa. Aquat. Living Resour. 9, Spec. Issue, 197–206. [Google Scholar]
  • Hecht T., Pienaar A.G., 1993, A review of cannibalism and its implications in fish larviculture. J. World Aquac. Soc. 24, 246–261. [CrossRef] [Google Scholar]
  • Hossain M.A.R., Haylor G.S., Beveridge M.C.M., 2000, The influence of food particle size on gastric emptying and growth rates of fingerling African catfish, Clarias gariepinus Burchell, 1822. Aquac. Nutr. 6, 73–76. [CrossRef] [Google Scholar]
  • Houde E.D., Zastrow C.E., 1993, Ecosystem- and taxon-specific dynamic and energetics properties of larval fish assemblages. Bull. Mar. Sci. 53, 290–335. [Google Scholar]
  • Hoyle J.A., Keast A., 1987, The effect of prey morphology and size on handling time in a piscivore, the largemouth bass (Micropterus salmoides). Can. J. Zool. 65, 1972–1977. [CrossRef] [Google Scholar]
  • Hseu J.-R., Chang H.-F., Ting Y.-Y., 2003, Morphometric prediction of cannibalism in larviculture of orange-spotted grouper, Epinephelus coioides. Aquaculture 218, 203–207. [CrossRef] [Google Scholar]
  • Hseu J.-R., Huang W.-B., 2014, Application of logistic regression analysis to predict cannibalism in orange-spotted grouper, Epinephelus coioides (Hamilton) fry. Aquac. Res. 45, 868–873. [CrossRef] [Google Scholar]
  • Hseu J.-R., Huang W.-B., Chu Y.-T., 2007, What causes cannibalization-associated suffocation in cultured brown-marbled grouper, Epinephelus fuscoguttatus (Forsskål, 1775)? Aquac. Res. 38, 1056–1060. [Google Scholar]
  • Hseu J.-R., Hwang P.P., Ting Y.Y., 2004, Morphometric model and laboratory analysis on intracohort cannibalism in giant grouper Epinephelus lanceolatus fry. Fish. Sci. 70, 482–486. [CrossRef] [Google Scholar]
  • Jobling M., 1987, Influences of food particle size and dietary energy content on patterns of gastric evacuation in fish: test of a physiological model of gastric emptying. J. Fish Biol. 30, 299–314. [CrossRef] [Google Scholar]
  • Jobling M., 1994, Fish Bioenergetics, London: Chapman and Hall. [Google Scholar]
  • Jobling M., Wandsvik A., 1983, An investigation of factors controlling food intake in Arctic charr, Salvelinus alpinus L. J. Fish Biol. 23, 391–404. [Google Scholar]
  • Johnson J.M., Post D.M., 1996, Morphological constraints on intracohort cannibalism in age-0 largemouth bass. Trans. Am. Fish. Soc. 125, 809–812. [CrossRef] [Google Scholar]
  • Juanes F., 1994, What determines prey size selectivity in piscivorous fishes? In: Stouder D.J., Fresh K.L., Feller R.J. (Eds.), Theory and Application in Fish Feeding Ecology. Columbia: South Carolina University Press, Belle W. Baruch Library in Marine Sciences No. 18, pp. 79–100. [Google Scholar]
  • Juanes F., 2003, The allometry of cannibalism in piscivorous fishes. Can. J. Fish. Aquat. Sci. 60, 594–602. [CrossRef] [Google Scholar]
  • Juanes F., Buckel J.A., Scharf F.S., 2002, Feeding ecology of piscivorous fishes. In: Hart P.J.B., Reynolds J.D. (Eds.), The Handbook of Fish Biology and Fisheries. Vol. 1: Fish Biology. London: Blackwell Scientific Publications, pp. 267–283. [Google Scholar]
  • Kamler E., 1992, Early Life History of Fish. London: Chapman and Hall. [Google Scholar]
  • Kerdchuen N., Legendre M., 1994, Larval rearing of an African catfish, Heterobranchus longifilis (Teleostei, Clariidae): a comparison between natural and artificial diets. Aquat. Living Resour. 7, 247–253. [CrossRef] [EDP Sciences] [Google Scholar]
  • Knights B., 1983, Food particle-size preferences and feeding behaviour in warmwater aquaculture of European eel, Anguilla anguilla (L.). Aquaculture 30, 173–190. [CrossRef] [Google Scholar]
  • Kolkovski S., 2001, Digestive enzymes in fish larvae and juveniles – implications and applications to formulated diets. Aquaculture 200, 181–201. [CrossRef] [Google Scholar]
  • Krebs J.R., Stephens D.W., 1986, Foraging theory. Princeton, NJ: Princeton University Press. [Google Scholar]
  • Legendre M., 1986, Seasonal changes in sexual maturity and fecundity, and HCG-induced breeding of the catfish, Heterobranchus longifilis Val. (Clariidae), reared in Ebrie Lagoon (Ivory Coast). Aquaculture 55, 201–213. [CrossRef] [Google Scholar]
  • Legendre M., Teugels G.G., Cauty C., Jalabert B., 1992, A comparative study of the growth rate and reproduction of Clarias gariepinus (Burchell, 1822), Heterobranchus longifilis Valenciennes, 1840, and their reciprocal hybrids (Pisces, Clariidae). J. Fish Biol. 40, 59–79. [CrossRef] [Google Scholar]
  • MacLean A., Huntingford F.A., Armstrong J.D., Ruxton G.D., 2003, Fish don’t read textbooks: juvenile salmon prove ignorant of foraging theory. J. Fish Biol. 63 (suppl. A), 236–237. [CrossRef] [Google Scholar]
  • Milinski M., 1979, Can an experienced predator overcome the confusion of swarming prey more easily? Anim. Behav. 27, 1122–1126. [CrossRef] [Google Scholar]
  • Mittelbach G.G., 1981, Foraging efficiency and body size: a study of optimal diet and habitat use by bluegills. Ecology 62, 1370–1386. [CrossRef] [Google Scholar]
  • Mittelbach G.G., Persson L., 1998, The ontogeny of piscivory and its ecological consequences. Can. J. Fish. Aquat. Sci. 55, 1454–1465. [CrossRef] [Google Scholar]
  • Moussa T.A., 1956, Morphology of the accessory air-breathing organs of the teleost, Clarias lazera (C. and V.). J. Morphol. 98, 125–160. [CrossRef] [Google Scholar]
  • Nwosu F.M., Holzlöhner S., 2000, Influence of temperature on egg hatching, growth and survival of larvae of Heterobranchus longifilis Val. 1840 (Teleostei: Clariidae). J. Appl. Ichthyol. 16, 20–23. [CrossRef] [Google Scholar]
  • Otémé Z., Hem J.S., Legendre M., 1996, Nouvelles espèces de poissons-chats pour le développement de la pisciculture africaine. Aquat. Living Resour. 9, Spec. Issue, 207–217. [Google Scholar]
  • Parra G., Yúfera M., 2001, Comparative energetics during early development of two marine fish species, Solea senegalensis (Kaup) and Sparus aurata (L.). J. Exp. Biol. 204, 2175–2183. [PubMed] [Google Scholar]
  • Persson L., 1986, Patterns of food evacuation in fishes: a critical review. Environ. Biol. Fishes 16, 51–58. [CrossRef] [Google Scholar]
  • Pyke G.H., Pulliam H.R.Charnov E.L., 1977, Optimal foraging: a selective review of theory and tests. Q. Rev. Biol. 52, 137–154. [CrossRef] [Google Scholar]
  • Qin J., Fast A.W., 1996, Size and feed dependent cannibalism with juvenile snakehead Channa striatus. Aquaculture 144, 313–320. [CrossRef] [Google Scholar]
  • Scharf F.S., Juanes F., Sutherland M., 1998, Inferring ecological relationships from the edges of scatter diagrams: a comparison of least squares and quantile regression techniques. Ecology 79, 448–460. [CrossRef] [Google Scholar]
  • Shirota A., 1970, Studies on the mouth size of fish larvae. Bull. Jpn. Soc. Sci. Fish. 36, 353–368 (In Japanese with English summary). [CrossRef] [Google Scholar]
  • Sih A., Christensen B., 2001, Optimal diet theory: when does it work, and when and why does it fail? Anim. Behav. 61, 379–390. [CrossRef] [Google Scholar]
  • Sogard S.M., Olla B.L., 1994, The potential for intracohort cannibalism in age-0 walleye pollock, Theragra chalcogramma, as determined under laboratory conditions. Environ. Biol. Fishes 39, 183–190. [CrossRef] [Google Scholar]
  • Tabachek J.L., 1988, The effect of feed particle size on growth and feed efficiency of Arctic charr (Salvelinus alpinus (L.)). Aquaculture 71, 319–330. [CrossRef] [Google Scholar]
  • Wahl D.H., Einfalt L.M., Hooe M.L., 1995, Effect of experience with piscivory on foraging behavior and growth of walleyes. Trans. Am. Fish. Soc. 124, 756–763. [CrossRef] [Google Scholar]
  • Wahl D.H., Stein R.A., 1988, Selective predation by three esocids: the role of prey behavior and morphology. Trans. Am. Fish. Soc. 117, 142–151. [CrossRef] [Google Scholar]
  • Wankowski J.W.J., Thorpe J.E., 1979, The role of food particle size in the growth of juvenile Atlantic salmon (Salmo salar L.). J. Fish Biol. 14, 351–370. [CrossRef] [Google Scholar]
  • Werner E.E., Gilliam J.F., 1984, The ontogenetic niche and species interactions in size-structured populations. Annu. Rev. Ecol. Syst. 15, 393–425. [CrossRef] [Google Scholar]
  • Werner E.E., Hall D.J., 1974, Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology 55, 1042–1052. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.