Aquat. Living Resour.
Volume 26, Number 4, October-December 2013
Deep-Sea Fisheries and Stocks
Page(s) 343 - 353
Section Deep-Sea Fisheries and Stocks
Published online 19 December 2013
  • Augustin N.H., Trenkel V.M., Wood S.N., Lorance P., 2013, Space-time modelling for blue ling using soap film smoothers. Environmetrics 24, 109–119. [CrossRef] [Google Scholar]
  • Bivand R.S., Pebesma E.J., Gómez-Rubio V., 2008, Applied spatial data analysis with R. New York, Springer. [Google Scholar]
  • Bonfil R., 1994, Overview of world elasmobranch fisheries. FAO Fisheries Technical Paper, Rome, No. 341. [Google Scholar]
  • Bordalo-Machado P., Fernandes A. C., Figueiredo I., Moura O., Reis S., Pestana G., Gordo L.S., 2009, The black scabbardfish (Aphanopus carbo, Lowe 1839) fisheries from Portuguese mainland and Madeira Island. Scient. Mar. 73, 63–76. [Google Scholar]
  • Bordalo-Machado P., Figueiredo I., 2007, Extraction and classification of longline fishing trips from vessel monitoring systems data with sequential recording gaps. 5th International Symposium, Spatial Data Quality 2007. Int. Soc. Photogram. Rem. Sens. Arch. 36–2C43. [Google Scholar]
  • Bordalo-Machado P., Figueiredo I., 2009, The fishery for the black scabbardfish (Aphanopus carbo, Lowe 1839) in the Portuguese continental slope. Rev. Fish Biol. Fish. 19, 49–67. [CrossRef] [Google Scholar]
  • Bordalo-Machado P., Sousa R.T., Matos J.G., 2007, A software toolkit to analyse vessel monitoring system data from longline fisheries. In: Nishida T., Kailola P.J., Caton A. (Eds.), GIS/Spatial analysis in fishery and aquatic sciences. Japan, Fishery-Aquatic GIS Research Group Saitama, Vol. 3, pp. 259–274. [Google Scholar]
  • Breiman L., 2001, Random forests, Machine Learnings 45, 5–32. [CrossRef] [Google Scholar]
  • Bridger J.P., 1978, New deep-water trawling grounds to the west of Britain. Lowestoft, MAFF Directorate of Fisheries Research, Laboratory Leaflet No. 41. [Google Scholar]
  • Brodeur R.D., Suchman C.L., Reese D.C, Miller T.W., Daly E.A., 2008, Spatial overlap and trophic interactions between fish and large jellyfish in the Northern California Current. Mar. Biol. 154, 649–59. [CrossRef] [Google Scholar]
  • Broennimann O., Treier U.A., Müller-Schärer H., Thuiller W., Peterson A.T., Guisan A., 2007, Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709. [CrossRef] [PubMed] [Google Scholar]
  • Broennimann O., Fitzpatrick M.C., Pearman P.B., Petitpierre B., Pellissier L., Yoccoz N.G., Thuiller W., Fortin M.-J., Randin C., Zimmermann N.E., Graham C.H., Guisan A., 2012, Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–487. [CrossRef] [Google Scholar]
  • Castro J.I., Woodley C.M., Brudek R.L., 1999, A preliminary evaluation of the status of shark species. FAO Fisheries Technical Papers, Rome, No. 380. [Google Scholar]
  • Chase J.M., Leibold M.A., 2003, Ecological niche: linking classical and contemporary approaches. The University of Chicago Press. [Google Scholar]
  • Clarke M.W., Connolly P.L., Bracken J.J., 2001, Aspects of reproduction of the deep-water sharks Centroscymnus coelolepis and Centrophorus squamosus from west of Ireland and Scotland. J. Mar. Biol. Assoc. UK 81, 1019–1029. [CrossRef] [Google Scholar]
  • Compagno L., Dando M., Fowler S., 2005, Sharks of the World. London, Harper Collins Publishers, Collins Field Guide. [Google Scholar]
  • Cressie N., 1993, Statistics for Spatial Data. Revised edition, New-York, Wiley. Wiley Series in Probability and Mathematical Statistics. [Google Scholar]
  • Ehrich S., 1983, On the ocurrence of some fish species at the slopes of the Rockall Trough. Arch. Fish. 33, 105–212. [Google Scholar]
  • Eastwood P.D., Meaden G.J., Carpentier A., Rogers S.I., 2003, Estimating limits to the spatial extent and suitability of sole (Solea solea) nursery grounds in the Dover Strait. J. Sea Res. 50, 151–165. [CrossRef] [Google Scholar]
  • Etterson J.R., Shaw R.G., 2001, Constraint to adaptive evolution in response to global warming. Science 294, 151–154. [CrossRef] [PubMed] [Google Scholar]
  • Figueiredo I., Machado P.B., Gordo L.S., 2005, Deep-water shark fisheries off the Portuguese continental coast. J. Northwest Atl. Fish. Sci. 35, 291–298. [CrossRef] [Google Scholar]
  • Fitzpatrick M.C., Weltzin J.F., Sanders N.J., Dunn R.R., 2007, The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Global Ecol. Biogeogr. 16, 24–33. [Google Scholar]
  • Friedman J.H., 2001, Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232. [CrossRef] [Google Scholar]
  • Garcia V.B., Lucifora L.O., Myers R.A., 2008, The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proc. R. Soc. B 275, 83–89. [CrossRef] [Google Scholar]
  • Gerritsen H., Lordan C., 2011, Integrating vessel monitoring systems (VMS) data with daily catch data from logbooks to explore the spatial distribution of catch and effort at high resolution. ICES J. Mar. Sci. 68, 245–252. [Google Scholar]
  • Guisan A., Thuiller W., 2005, Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009. [CrossRef] [Google Scholar]
  • ICES, 2011, Report of the Working Group for North-east Atlantic Continental Slope Survey (WGNEACS), 14–16 June 2011, ICES HQ, Copenhagen, ICES CM 2011/SSGESST:15. [Google Scholar]
  • ICES, 2012, Report of the Working Group on the Biology and Assessment of Deep-sea Fisheries Resources (WGDEEP), 28 March–5 April, Copenhagen, ICES CM 2012/ACOM:17. [Google Scholar]
  • Jump A.S., Peñuelas J., 2005, Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020. [Google Scholar]
  • Kelly C.J., Clarke M., Connolly P.L., 1997, Catch and discards from a deep-water trawl survey in 1996. Fish. Leaf. 175, 1–16. Ir. Marine Institute, Dublin. [Google Scholar]
  • Large P.A., Diez G., Drewery J., Laurans M., Pilling G.M., Reid D.G., Reinert J., South A.B., Vinnichenko V.I., 2010, Spatial and temporal distribution of spawning aggregations of blue ling (Molva dypterygia) west and northwest of the British Isles. ICES J. Mar. Sci. 67, 494–501. [CrossRef] [Google Scholar]
  • Lewison R.L., Soykan C.U., Franklin J., 2009, Mapping the bycatch seascape: multispecies and multi-scale spatial patterns of fisheries bycatch. Ecol. Appl. 19, 920–930. [CrossRef] [PubMed] [Google Scholar]
  • Machete M., Morato T., Menezes G., 2011, Experimental fisheries for black scabbardfish (Aphanopus carbo) in the Azores, Northeast Atlantic. ICES J. Mar. Sci. 68, 302–308. [CrossRef] [Google Scholar]
  • Maxwell D.L., Stelzenmuller V., Eastwood P.D., Rogers S.I., 2009, Modelling the spatial distribution of plaice (Pleuronectes platessa), sole (Solea solea) and thornback ray (Raja clavata) in UK waters for marine management and planning. J. Sea Res. 61, 258–267. [CrossRef] [Google Scholar]
  • McCullagh P., Nedler J., 1989, Generalized linear models, 2nd edition. Boca Raton, FL, Chapman and Hall/CRC. [Google Scholar]
  • Medley K.A., 2010, Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Global Ecol. Biogeogr. 19, 122–133. [Google Scholar]
  • Pajuelo J.G., Gonzalez J.A., Santana J.I., 2010, Bycatch and incidental catch of the black scabbardfish (Aphanopus spp.) fishery off the Canary Islands. Fish. Res. 106, 448–453. [CrossRef] [Google Scholar]
  • Pebesma E.J., 2004, Multivariable geostatistics in S: the gstat package. Comput. Geosci. 30, 683–691. [CrossRef] [Google Scholar]
  • Philips S.J., Anderson R.P., Schapire R.E., 2006, Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. [Google Scholar]
  • Pittman S.J., Christensen J.D., Caldow C., Menza C., Monaco M.E., 2007, Predictive mapping of fish species richness across shallow-water seascapes in the Caribbean. Ecol. Model. 204, 9–21. [CrossRef] [Google Scholar]
  • Pratt H.L, Casey J.G., 1990, Shark reproductive strategies as a limiting factor in directed fisheries, with a review of Holden’s method of estimating growth parameters. In: Pratt Jr H.L., Gruber S.H., Taniuchi T. (Eds.). Elasmobranchs as living resources: advances in the biology, ecology, systematics and the status of the fisheries. NOAA Technical Report NMFS, No. 90, pp 97–109. [Google Scholar]
  • R Development Core Team, 2012, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL [Google Scholar]
  • Simpfendorfer C.A., Kyne P.M., 2009, Limited potential to recover from overfishing raises concerns for deep-sea sharks, rays and chimaeras. Environ. Conserv. 36, 97–103. [CrossRef] [Google Scholar]
  • Sims M., Cox T., Lewison R., 2008, Modelling spatial patterns in fisheries bycatch: improving bycatch maps to aid fisheries management. Ecol. Appl. 18, 649–661. [CrossRef] [PubMed] [Google Scholar]
  • STECF, 2002, Report of the subgroup on resource status (SGRST) of the scientific, technical and economic committee for fisheries (STECF). Brussels elasmobranchs fisheries. [Google Scholar]
  • Steiner F.M., Schlick-Steiner B.C., VanDerWal J., Reuther K.D., Christian E., Stauffer C., Suarez A.V., Williams S.E., Crozier R.H., 2008, Combined modeling of distribution and niche in invasion biology: a case study of two invasive Tetramorium and species. Divers. Distrib. 14, 347–357. [CrossRef] [Google Scholar]
  • Stelzenmüller V., Maynou F., Ehrich S., Zauke G.P., 2004, Spatial analysis of twaite shad, Alosa fallax (Lacepède 1803), in the Southern North Sea: application of non-linear geostatistics as a tool to search for special areas of conservation. Int. Rev. Hydrobiol. 89, 337–351. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.