Issue
Aquat. Living Resour.
Volume 26, Number 3, July-September 2013
Thematic Section: Physiology in Marine Molluscs
Page(s) 249 - 256
DOI https://doi.org/10.1051/alr/2013053
Published online 07 June 2013
  • Allen S.M., Burnett L.E., 2008, The effects of intertidal air exposure on the respiratory physiology and the killing activity of hemocytes in the pacific oyster, Crassostrea gigas (Thunberg). J. Exp. Mar. Biol. Ecol. 357, 165–171. [CrossRef] [Google Scholar]
  • Almeida E.A., Bainy A.C.D., Dafre A.L., Gomes O.F., Medeiros M.H.G., Di Mascio P., 2005, Oxidative stress in digestive gland and gill of the brown mussel (Perna perna) exposed to air and re-submersed. J. Exp. Mar. Biol. Ecol. 318, 21–30. [CrossRef] [Google Scholar]
  • Blier P.U., Lemieux H., 2001, The impact of the thermal sensitivity of cytochrome c oxidase on the respiration rate of Arctic charr red muscle mitochondria. J. Comp. Physiol. B 171, 247–253. [CrossRef] [PubMed] [Google Scholar]
  • Bouchard P., Guderley H., 2003, Time course of the response of mitochondria from oxidative muscle during thermal acclimation of rainbow trout, Oncorhynchus mykiss. J. Exp. Biol. 206, 3455-3465. [CrossRef] [PubMed] [Google Scholar]
  • Burcham J.M., Paynter K.T., Bishop S., 1983, Coupled mitochondria from oyster gill tissue. Mar. Biol. Lett. 4, 349-356. [Google Scholar]
  • Coleman N., 1973, The oxygen consumption of Mytilus edulis in air. Comp. Biochem. Physiol. A 45, 393–402. [CrossRef] [Google Scholar]
  • Estabrook R.W., 1967, Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. In: Estabrook R.W., Pullman M.E. (Eds) Oxidation and phosphorylation, New York, Academic Press, pp. 41–47. [Google Scholar]
  • Grieshaber M., Hardewig I., Kreutzer U., Pörtner H.O., 1994, Physiological and metabolic responses to hypoxia in invertebrates. Rev. Physiol. Biochem. Pharmacol. 125, 43–147. [CrossRef] [PubMed] [Google Scholar]
  • Hinkle P.C., Kumar M.A., Resetar A., Harris D.L., 1991, Mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Biochemistry 30, 3576–3582. [CrossRef] [PubMed] [Google Scholar]
  • Huang S.C., Newell R.I.E., 2002, Seasonal variations in the rates of aquatic and aerial respiration and ammonium excretion of the ribbed mussel, Geukensia demissa (Dillwyn). J. Exp. Mar. Biol. Ecol. 270, 241–255. [CrossRef] [Google Scholar]
  • Ivanina A.V., Eilers S., Kurochkin I.O., Chung J.S., Techa S., Piontkivska H., Sokolov E.P., Sokolova I.M., 2010a, Effects of cadmium exposure and intermittent anoxia on nitric oxide metabolism in eastern oysters, Crassostrea virginica. J. Exp. Biol. 213, 433–444. [CrossRef] [PubMed] [Google Scholar]
  • Ivanina A.V., Kurochkin I.O., Leamy L., Sokolova I.M., 2012, Effects of temperature and cadmium exposure on the mitochondria of oysters (Crassostrea virginica) exposed to hypoxia and subsequent reoxygenation. J. Exp. Biol. 215, 3142–3154. [CrossRef] [PubMed] [Google Scholar]
  • Ivanina A.V., Sokolov E.P., Sokolova I.M., 2010b, Effects of cadmium on anaerobic energy metabolism and mRNA expression during air exposure and recovery of an intertidal mollusk Crassostrea virginica. Aquat. Toxicol. 99, 330–342. [CrossRef] [PubMed] [Google Scholar]
  • Kraffe E., Tremblay R., Belvin S., LeCoz J.R., Marty Y., Guderley H., 2008, Effect of reproduction on escape responses, metabolic rates and muscle mitochondrial properties in the scallop Placopecten magellanicus. Mar. Biol. 156, 25–38. [CrossRef] [Google Scholar]
  • Kurochkin I.O., Ivanina A.V., Eilers S., Downs C.A., May L.A., Sokolova I.M., 2009, Cadmium affects metabolic responses to prolonged anoxia and reoxygenation in eastern oysters (Crassostrea virginica). Am. J. Physiol. Regul. Integrat. Comp. I 297, 1262–1272. [CrossRef] [Google Scholar]
  • Le Moullac G., Bacca H., Huvet A., Moal J., Pouvreau S., Van Wormhoudt A., 2007, Transcriptional regulation of pyruvate kinase and phosphoenolpyruvate carboxykinase in the adductor muscle of the oyster Crassostrea gigas during prolonged hypoxia. J. Exp. Zool. A 307, 371–382. [Google Scholar]
  • Lent C.M., 1968, Air-gaping by the ribbed mussel, Modiolus demissus (Dillwyn): effects and adaptive significance. Biol. Bull. 134, 60–73. [CrossRef] [Google Scholar]
  • Malis C.D., Bonventre J.V., 1986, Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria. A model for post-ischemic and toxic mitochondrial damage. J. Biol. Chem. 261, 14201–14208. [Google Scholar]
  • Martin N., Bureau D.P., Marty Y., Kraffe E., Guderley H., 2012, Dietary lipid quality and mitochondrial membrane composition in trout: responses of membrane enzymes and oxidative capacities. J. Comp. Physiol. B 183, 393-408. [CrossRef] [PubMed] [Google Scholar]
  • Michaelidis B., Haas D., Grieshaber M.K., 2005, Extracellular and intracellular acid-base status with regard to the energy metabolism in the oyster Crassostrea gigas during exposure to air. Physiol. Biochem. Zool. 78, 373–383. [CrossRef] [PubMed] [Google Scholar]
  • Mingoa-licuanan S.S., 1993, Oxygen consumption and ammonia excretion in juvenile Tridacna gigas (Linne, 1758): effects of emersion. J. Exp. Mar. Biol. Ecol. 171, 119–137. [Google Scholar]
  • Moal J., Samain J.F., Le Coz J.R., Daniel J.Y., 1989, Responses and adaptations of the adenylate energy charge and digestive enzyme activities to tidal emersion of Crassostrea gigas populations in Marennes-Oléron Bay. Sci. Mar. 53, 699–704. [Google Scholar]
  • Muleme H.M., Walpole A.C., Staples J.F., 2006, Mitochondrial metabolism in hibernation: metabolic suppression, temperature effects, and substrate preferences. Physiol. Biochem. Zool. 79, 474–483. [CrossRef] [PubMed] [Google Scholar]
  • Nesci S., Ventrella V., Trombetti F., Pirini M., Pagliarani A., 2012, Tributyltin-driven enhancement of the DCCD insensitive Mg-ATPase activity in mussel digestive gland mitochondria. Biochimie 94, 727–733. [CrossRef] [PubMed] [Google Scholar]
  • Newell R.C., 1979, Biology of intertidal animals. 3rd edn., Faversham, Marine Ecological Surveys. [Google Scholar]
  • Nicchitta C.V., Ellington W.R., 1983, Energy metabolism during air exposure and recovery in the high intertidal bivalve mollusc Geukensia demissa granosissima and the subtidal bivalve mollusc Modiolus squamosus. Biol. Bull. 165, 708–722. [CrossRef] [PubMed] [Google Scholar]
  • Oellermann M., Pörtner H.O., Mark F.C., 2012, Mitochondrial dynamics underlying thermal plasticity of cuttlefish (Sepia officinalis) hearts. J. Exp. Biol. 215, 2992–3000. [CrossRef] [PubMed] [Google Scholar]
  • Pampanin D.M., Ballarin L., Carotenuto L., Marin M.G., 2002, Air exposure and functionality of Chamelea gallina haemocytes: effects on haematocrit, adhesion, phagocytosis and enzyme contents. Comp. Biochem. Physiol. A 131, 605–614. [CrossRef] [Google Scholar]
  • Pichaud N., Rioux P., Blier P.U., 2012, In situ quantification of mitochondrial respiration in permeabilized fibers of a marine invertebrate with low aerobic capacity. Comp. Biochem. Physiol. A 161, 429–435. [CrossRef] [Google Scholar]
  • Piontkivska H., Chung J.S., Ivanina A.V., Sokolov E.P., Techa S., Sokolova I.M., 2011, Molecular characterization and mRNA expression of two key enzymes of hypoxia-sensing pathways in eastern oysters Crassostrea virginica (Gmelin): hypoxia-inducible factor α (HIF-α) and HIF-prolyl hydroxylase (PHD). Comp. Biochem. Physiol. D 6, 103–114. [Google Scholar]
  • Rafrafi S., Uglow R.F., 2009, Nitrogenous compounds changes in emersed oysters: Crassostrea gigas. Estuar. Coast. Shelf. Sci. 81, 210–214. [CrossRef] [Google Scholar]
  • Roberts J., Aubert S., Gout E., Bligny R., Douce R., 1997, Cooperation and competition between adenylate kinase, nucleoside diphosphokinase, electron transport, and ATP synthase in plant mitochondria studied by 31P-nuclear magnetic resonance. Plant. Physiol. 113, 191–199. [PubMed] [Google Scholar]
  • Rustin P., Chretien D., Bourgeron T., Gérard B., Rötig A., Saudubray J.M., Munnich A., 1994, Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta 228, 35–51. [CrossRef] [PubMed] [Google Scholar]
  • Shick J.M., Widdows J., Gnaiger E., 1988, Calorimetric studies of behavior, metabolism and energetics of sessile intertidal animals. Am. Zool. 28, 161–181. [Google Scholar]
  • Sokolova I.M., Ringwood A.H., Johnson C., 2005, Tissue-specific accumulation of cadmium in subcellular compartments of eastern oysters Crassostrea virginica Gmelin (Bivalvia: Ostreidae). Aquat. Toxicol. 74, 218–228. [CrossRef] [PubMed] [Google Scholar]
  • Sukhotin A.A., Pörtner H.O., 1999, Habitat as a factor involved in the physiological response to environmental anaerobiosis of White Sea Mytilus edulis. Mar. Ecol. Prog. Ser. 184, 149–160. [CrossRef] [Google Scholar]
  • Sussarellu R., Dudognon T., Fabioux C., Soudant P., Moraga D., Kraffe E., 2013, Rapid mitochondrial adjustments in response to short-term hypoxia and re-oxygenation in the Pacific oyster Crassostrea gigas. J. Exp. Biol. 216, 1561-1569. [CrossRef] [PubMed] [Google Scholar]
  • Widdows J., Bayne B.L., Livingstone D.R., Newell R.I.E., Donkin P., 1979, Physiological and biochemical responses of bivalve molluscs to exposure to air. Comp. Biochem. Physiol. A 62, 301–308. [CrossRef] [Google Scholar]
  • Wijsman T.C.M., 1976, Adenosine phosphates and energy charge in different tissues Mytilus edulis L. under aerobic and anaerobic conditions. J. Comp. Physiol. B 107, 129–140. [CrossRef] [Google Scholar]
  • Zhang Z., Li X., Vandepeer M., Zhao W., 2006, Effects of water temperature and air exposure on the lysosomal membrane stability of hemocytes in Pacific oysters, Crassostrea gigas (Thunberg). Aquaculture 256, 502–509. [CrossRef] [Google Scholar]
  • Zheng J., Ramirez V.D., 1999, Rapid inhibition of rat brain mitochondrial proton FoF1-ATPase activity by estrogens: comparison with Na+, K+-ATPase of porcine cortex. Eur. J. Pharmacol. 368, 95–102. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.