Free Access
Issue
Aquat. Living Resour.
Volume 26, Number 2, April-May 2013
Page(s) 171 - 178
Section Marine Protected Areas
DOI https://doi.org/10.1051/alr/2012032
Published online 19 December 2012
  • Abbott J.K., Haynie A.C., 2012, What are we protecting? Fisher behaviour and the unintended consequences of spatial closures as fishery management tool. Ecol. Appl. 22, 762–777. [CrossRef] [PubMed] [Google Scholar]
  • Adam M.S., 2010, Declining catches of skipjack in the Indian Ocean – Observation from the Maldives. Proc. 10th Meeting of the working party on tropical tuna, Indian Ocean Tuna Commission, IOTC-2010-WPTT-09. [Google Scholar]
  • Aumont O., Bopp L., 2006, Globalizing results from ocean in situ iron fertilization studies. Glob. Biogeochem. Cycles 20, GB2017, doi: 10.1029/2005GB002591. [Google Scholar]
  • Barkley R., Neill W.H., Gooding R.M.G., 1978, Skipjack tuna, Katsuwonus Pelamis, habitat based on temperature and oxygen requirements. Fish. Bull. 76, 653–662. [Google Scholar]
  • Botsford L.W., Micheli F., Hastings A., 2003, Principles for the design of marine reserves. Ecol. Appl. 13, S25–S31. [CrossRef] [Google Scholar]
  • Brill R.W., 1994, A review of temperature and oxygen tolerance studies of tunas pertinent to fisheries oceanography, movement models and stock assessments. Fish. Oceanogr. 3, 204–216. [Google Scholar]
  • Brill R.W., Lutcavage M.E., 2001, Understanding environmental influences on movements and depth distributions of tunas and billfishes can significantly improve population assessment. Am. Fish. Soc. Symp. 25, 179–198. [Google Scholar]
  • Dowling N.A., Wilcox C., Mangel M., Pascoe S., 2011, Assessing opportunity and relocation costs of marine protected areas using a behavioral model of longline fleet dynamics. Fish Fish. 13, 139–157. [CrossRef] [Google Scholar]
  • Dueri S., Faugeras B., Maury O., 2012a, Modelling the skipjack tuna dynamics in the Indian Ocean with APECOSM-E : Part 1 Model formulation. Ecol. Model. 245, 41–54. [CrossRef] [Google Scholar]
  • Dueri S., Faugeras B., Maury O., 2012b, Modelling the skipjack tuna dynamics in the Indian Ocean with APECOSM-E : Part 2 Parameter estimation and sensitivity analysis. Ecol. Model. 245, 55–64. [CrossRef] [Google Scholar]
  • Faugeras B., Maury O., 2007, Modeling fish population movements : From an individual-based representation to an advection-diffusion equation. J. Theor. Biol. 247, 837–848. [CrossRef] [PubMed] [Google Scholar]
  • Game E.T., Grantham H.S., Hobday A.J., Pressey R., Lombard A.T., Beckley L.E., Gjerde K., Bustamante R., Possingham H.P., Richardson A.J., 2009, Pelagic protected areas : the missing dimension in ocean conservation. Trends Ecol. Evol. 24, 360–369. [CrossRef] [PubMed] [Google Scholar]
  • Grafton R.Q., Kompas T., Lindenmayer D., 2005, Marine reserves with ecological uncertainty. Bull. Math. Biol. 67, 957–971. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Grüss A., Kaplan D.M., Guénette S., Roberts C.M., Botsford L.W., 2011, Consequences of adult and juvenile movement for marine protected areas. Biol. Conserv. 144, 692–702. [CrossRef] [Google Scholar]
  • Goodwin N.B., Grant A., Perry A.L., Dulvy N.K., Reynolds J.D., 2006, Life history correlates of density-dependent recruitment in marine fishes. Can. J. Fish. Aquat. Sci. 63, 494–509. [CrossRef] [Google Scholar]
  • Hobday A.J., Hartmann K., 2006, Near real-time spatial management based on habitat predictions for a longline bycatch species. Fish. Manage. Ecol. 13, 365–380. [CrossRef] [Google Scholar]
  • Hobday A.J., Hartog J.R., Spillman C.M., Alves, O., 2011, Seasonal forecasting of tuna habitat for dynamic spatial management. Can. J. Fish. Aquat. Sci. 68, 898–911. [CrossRef] [Google Scholar]
  • Hyrenbach K.D., Forney K.A., Dayton P.K., 2000, Marine protected areas and ocean basin management. Aquat. Conserv. Mar. Freshw. Ecosyst. 10, 437–458. [CrossRef] [Google Scholar]
  • Indian Ocean Tuna Commission, 2008, Report of the First Session of the IOTC Working party on tagging data analysis. Victoria, Seychelles IOTC-2008-WPTDA-R[E]. [Google Scholar]
  • Indian Ocean Tuna Commission, 2010a, Report of the twelfth session of the IOTC Working party on tropical tunas. Victoria, Seychelles, IOTC-2010-WPTT-R[E]. [Google Scholar]
  • Indian Ocean Tuna Commission, 2010b, For the conservation and management of tropical tunas stocks in the IOTC area of competence. IOTC resolution 10/01, Indian Ocean Tuna Commission. [Google Scholar]
  • Koldewey H.J., Curnick D., Harding S., Harrison L.R., Gollock M., 2010, Potential benefits to fisheries and biodiversity of the Chagos Archipelago/British Indian Ocean Territory as a no-take marine reserve. Mar. Pollut. Bull. 60, 1906–1915. [CrossRef] [PubMed] [Google Scholar]
  • Kooijman S.A.L.M., 2000, Dynamic energy and mass budgets in biological systems. Cambridge University Press. [Google Scholar]
  • Lehodey P., Senina I., Murtugudde R., 2008, A spatial ecosystem and population dynamics model (SEAPODYM) – Modeling of tuna and tuna-like populations. Prog. Oceanogr. 78, 304–318. [CrossRef] [Google Scholar]
  • Lester S.E., Halpern B.S., Grourud-Covert K., Lubchenco J., Ruttenberg B.I., Gaines, S.D., Airamé S., Warner R.R., 2009, Biological effects within no-take marine reerves : a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46. [CrossRef] [Google Scholar]
  • Marine Research Centre, Maldives, 1996, The Maldivian tuna fishery : a collection of tuna resource papers. Maldives Mar. Res. Bull. 2. [Google Scholar]
  • Marsac F., Le Blanc J.L., 1998, Interannual and ENSO-associated variability of the coupled ocean-atmosphere system with possible impacts on the yellowfin tuna fisheries in the Indian and Atlantic oceans. In : ICCAT Tuna Symposium, ICCAT Coll. Vol. Sci. Pap. L(1), 345–377. [Google Scholar]
  • Maury O., 2010, An overview of APECOSM, a spatialized mass balanced “apex predators ecosystem model” to study physiologically structured tuna population dynamics in their ecosystem. In : St John M.A., Ruiz J., Monfray P. (Eds.) Parameterisation of trophic interactions in ecosystem modelling. Prog. Oceanogr. 84, 113–117. [CrossRef] [Google Scholar]
  • Maury O., Gascuel D., 1999, SHADIS (“simulateur halieutique de dynamiques spatiales”), a GIS based numerical model of fisheries. Example application : the study of a marine protected area. Aquat. Living Resour. 12, 77–88. [CrossRef] [EDP Sciences] [Google Scholar]
  • Maury O., Nordström V., 2002, Application of the PROCEAN model to the Indian ocean yellowfin tuna (Thunnus albacores) fishery. IOTC working party on tropical tuna, Shangai 3-11/06/2002. [Google Scholar]
  • Ménard F., Marsac F., Bellier E., Cazelles B., 2007, Climatic oscillations and tuna catch rates in the Indian Ocean : a wavelet approach to time series analysis. Fish. Oceanogr. 16, 95–104. [CrossRef] [Google Scholar]
  • Moffitt E.A., Botsford L.W., Kaplan D.M., O'Farrell M.R., 2009, Marine reserve networks for species that move within a home range. Ecol. Appl. 19, 1835–1847. [CrossRef] [PubMed] [Google Scholar]
  • Mugo R., Saitoh S.I., Nihira A., Kuroyama T., 2010, Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific : a remote sensing perspective. Fish. Oceanogr. 19, 382–396. [CrossRef] [Google Scholar]
  • Pitcher T.J., 2001, Fisheries managed to rebuild ecosystems? Recostructing the past to salvage the future. Ecol. Appl. 11, 601–617. [CrossRef] [Google Scholar]
  • Roberts C.M., Bohnsack J.A., Gell F., Hawkins J.P., Goodridge R., 2001, Effects of marine reserves on adjacent fisheries. Science 294, 1920–1923. [CrossRef] [PubMed] [Google Scholar]
  • Roberts C.M., Hawkins J.P., Gell F.R., 2005, The role of marine reserves in achieving sustainable fisheries. Phil. Trans. R. Soc. B 360, 123–132. [Google Scholar]
  • Rose K.A., Cowan J.H. Jr., Winemiller K.O., Myers R.A., Hilborn R., 2001, Compensatory density dependence in fish populations : importance, controversy, understanding and prognosis. Fish Fish. 2, 293–327. [CrossRef] [Google Scholar]
  • Salas S., Gaertner D., 2004, The behavioral dynamics of fishers : management implications. Fish Fish. 5, 153–167. [CrossRef] [Google Scholar]
  • Stéquert B., Ramcharrun B., 1996, La reproduction du listao (Katsuwonus pelamis) dans le bassin ouest de l’océan Indien. Aquat. Living Resour. 9, 235–247. [CrossRef] [EDP Sciences] [Google Scholar]
  • Sumaila U.R., Guénette S., Alder J., Chuenpagdee R., 2000, Addressing ecosystem effects of fishing using marine protected areas. ICES J. Mar. Sci. 57, 752–760. [CrossRef] [Google Scholar]
  • Torres-Irineo E., Gaertner D., Delgado de Molina A., Ariz J., 2011, Effect of time-area closure on tropical tuna purse-seine fleet dynamics through some fishery indicators. Aquat. Living Resour. 24, 337–350. [CrossRef] [EDP Sciences] [Google Scholar]
  • UNOSAT 2009, Analysis of Somali pirate activity in 2009. Available : http://unosat.web.cern.ch/unosat/freeproducts/somalia/Piracy/2009/UNOSAT_Somalia_Pirates_Analysis_Q1_2009_23April09_v1.pdf. [Google Scholar]
  • Valdemarsen J.W., 2001, Technological trend in capture fisheries. Ocean Coast. Manage. 44, 635–651. [Google Scholar]
  • Walters C., 2000, Impacts of dispersal, ecological interactions, and fishing effort dynamics on efficacy of marine protected areas : how large should protected areas be? Bull. Mar. Sci. 66, 745–757. [Google Scholar]
  • Walters C.J., Hilborn R., Parrish R., 2007, An equilibrium model for predicting the efficacy of marine protected areas in coastal environments. Can. J. Fish. Aquat. Sci. 64, 1009–1018. [CrossRef] [Google Scholar]
  • Wilcox C., Pomeroy C., 2003, Do commercial fishers aggregate around marine reserves? Evidence from Big Creek marine ecological reserve, Central California. N. Am. J. Fish. Manage. 23, 241–250. [CrossRef] [Google Scholar]
  • Wilen J.E., Smith M.D., Lockwood D., Botsford L.W., 2002, Avoiding surprises : incorporating fisherman behavior into management models. Bull. Mar. Sci. 70, 553–575. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.