Free Access
Aquat. Living Resour.
Volume 26, Number 2, April-May 2013
Page(s) 187 - 196
Section Marine Protected Areas
Published online 28 November 2012
  • Adkins J.F., Henderson G.M., Wang J.L., O'Shea S., Mokaden F., 2004, Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrata. Earth Planet. Sci. Lett. 227, 481–490. [CrossRef] [Google Scholar]
  • Allemand D., Ferrier-Pagès C., Furla P., Houlbrèque F., Puverel S., Reynaud S., Tambutté E., Tambutté S., Zoccola D., 2004, Biomineralisation in reef-building corals : from molecular mechanisms to environmental control. C.R. Palevol 3, 453–467. [CrossRef] [Google Scholar]
  • Andrews A.H., Cordes E., Mahoney M.M., Munk K., Coale K.H., Cailliet G.M., Heifetz J., 2002, Age and growth and radiometric age validation of a deep-sea, jabitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska. Hydrobiologia 471, 101–110. [CrossRef] [Google Scholar]
  • Barbin V., Ramseyer K., Elfman M., 2008, Biological record of added manganese in seawater : a new efficient tool to mark in vivo growth lines in the oyster species Crassostrea gigas. Int. J. Earth Sci. 97, 193–199. [CrossRef] [Google Scholar]
  • Bell N., Smith J., 1999, Coral growing on North Sea oil rigs. Nature 402, 601. [CrossRef] [PubMed] [Google Scholar]
  • Brooke A., Young C.M., 2009, In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 397, 153–161. [CrossRef] [Google Scholar]
  • Cairns S.D., Parker S.A., 1992, Phylogenetic implications of calcium carbonate mineralogy in the Stylasteriae (Cnidaria, Hydrozoa). Palaios 7, 96–107. [CrossRef] [Google Scholar]
  • Cheng H., Adkins J.F., Edwards R.L., Boyle E.A., 2000, U-Th dating of deep-sea corals. Geochim. Cosmochim. Acta 64, 2401–2416. [CrossRef] [Google Scholar]
  • Clark M.R., Tittensor D.P., 2010, An index to assess the risk to stony corals from bottom trawling on seamounts. Mar. Ecol. 31, 200–211. [CrossRef] [Google Scholar]
  • Cohen A.L., Smith S.R., McCartney M.S., van Etten J., 2004, How brain corals record climate : an integration of skeletal structure, growth and chemistry of Diploporia labyrinthiformis from Bermuda. Mar. Ecol. Prog. Ser. 271, 147–158. [CrossRef] [Google Scholar]
  • Company J.B., Puig P., Sarda F., Palanques A., Latasa M., Scharek R., 2008, Climate influence on deep sea populations. PLoS ONE 3, e1431. [CrossRef] [PubMed] [Google Scholar]
  • Costello M., McCrea M., Freiwald A., Lundälv T., Jonsson L., Bett B.J., van Weering T.C.E., de Haas H., Roberts J.M., Allen D., Eds. 2005, Role of cold-water Lophelia pertusa coral reefs as fish habitat in the NE Atlantic. Berlin, Springer-Verlag. [Google Scholar]
  • Dustan P., 1975, Growth and form in the reef-building coral Montastrea annularis. Mar. Biol. 33, 101–107. [CrossRef] [Google Scholar]
  • Form A.U., Riebesell U., 2012, Acclimatation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob. Change Biol. 18, 843–853. [CrossRef] [Google Scholar]
  • Fossa J.H., Mortensen P.B., Furevik D.M., 2002, The deep-water coral Lophelia pertusa in Norwegian waters : distribution and fishery impacts. Hydrobiologia 471, 12. [CrossRef] [Google Scholar]
  • Fourt M., Goujard A., Bonhomme D., 2012, Traitement des données acquises dans le cadre de la campagne “MEDSEACAN” (têtes des canyons méditerranéens continentaux). Phase 2 - Boîte 1. Partenariat Agence des aires marines protégées - GIS Posidonie, GIS Posidonie publ., Marseille, 26. [Google Scholar]
  • Freiwald A., Fossa J.H., Grehan A., Koslow T., Roberts J.M., 2004, Cold-water coral reefs : out of sight - no longer out of mind. UNEP-WCMC, Cambridge. [Google Scholar]
  • Fujikura K., Okoshi K., Naganuma T., 2003, Strontium as a marker for estimation of microscopic growth rates in a bivalve. Mar. Ecol. Prog. Ser. 257, 295–301. [CrossRef] [Google Scholar]
  • Gass S.E., Roberts J.M., 2006, The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea : colony growth, recruitment and environmental controls on distribution. Mar. Pollut. Bull. 52, 549–559. [CrossRef] [PubMed] [Google Scholar]
  • Gass S.E., Roberts J.M., 2011, Growth and branching patterns of Lophelia pertusa (Scleractinia) from the North Sea. J. Mar. Biol. Assoc. UK 91, 831–835. [CrossRef] [Google Scholar]
  • Guinotte J.M., Orr J., Cairns S.D., 2006, Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Frontiers Ecol. Environ. 4, 141–146. [CrossRef] [Google Scholar]
  • Hall-Spencer J., Allain J., Fossa J.H., 2002, Trawling damage to Northeast Atlantic ancient coral reefs. Proc. R. Soc. Lond. B Biol. Sci. 269, 507–511. [CrossRef] [Google Scholar]
  • Heussner S., Durrieu de Madron X., Calafat A., Canals M., Carbonne J., Delsaut N., Saragoni G., 2006, Spatial and temporal variability of downward particle fluxes on a continental slope : Lessons from an 8-yr experiment in the Gulf of Lions (NW Mediterranean). Mar. Geol. 234, 63–92. [CrossRef] [Google Scholar]
  • Kaehler S., McQuaid I.R., 1999, Use of the fluorochrome calcein as an in situ growth marker in the brown mussel Perna perna. Mar. Biol. 133, 455–460. [CrossRef] [Google Scholar]
  • Lartaud F., Langlet D., de Rafelis M., Emmanuel L., Renard M., 2006, Description of seasonal rythmicity in fossil osyter shells Crassostrea aginensis Tournouer, 1914 (Aquitanian) and Ostrea bellovacina Lamarck, 1806 (Thanetian). Cathodoluminescence and sclerochronological approaches. Geobios 39, 845–852. [CrossRef] [Google Scholar]
  • Lartaud F., Emmanuel L., de Rafelis M., Ropert M., Labourdette N., Richardson C.A., Renard M., 2010a, A latitudinal gradient of seasonal temperature variation recorded in oyster shells from the coastal waters of France and The Netherlands. Facies 56, 13–25. [CrossRef] [Google Scholar]
  • Lartaud F., Chauvaud L., Richard J., Toulot A., Bollinger C., Testut L., Paulet Y.M., 2010b, Experimental growth pattern calibration of Antarctic scallop shells (Adamussium colbecki Smith, 1902) to provide a biogenic archive of high-resolution records of environmental and climatic changes. J. Exp. Mar. Biol. Ecol. 393, 158–167. [CrossRef] [Google Scholar]
  • Lartaud F., de Rafelis M., Ropert M., Emmanuel L., Geairon P., Renard M., 2010c, Mn labelling of living oysters : artificial and natural cathodoluminescence analysis as a tool for age and growth rate determination of C. gigas (Thunberg, 1793) shells. Aquaculture 300, 206–217. [CrossRef] [Google Scholar]
  • Mahe K., Bellamy E., Lartaud F., de Rafelis M., 2010, Calcein and manganese experiments for marking the shell of the common cockle (Cerastoderma edule) : tidal rhythm validation of increments formation. Aquat. Living Resour. 23, 239–245. [CrossRef] [EDP Sciences] [Google Scholar]
  • Maier C., Hegeman J., Weinbauer M.G., Gattuso J.P., 2009, Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosci. Discuss. 6, 1875–1901. [CrossRef] [Google Scholar]
  • Maier C., Watremez P., Taviani M., Weinbauer M.G., Gattuso J.P., 2012, Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc. R. Soc. Lond. B Biol. Sci. 279, 1713–1723. [CrossRef] [Google Scholar]
  • Mikkelsen N., Erlenkeuser H., Killingley J.S., Berger W.H., 1982, Norwegian corals : radiocarbon and stable isotopes in Lophelia pertusa. Boreas 11, 163–171. [CrossRef] [Google Scholar]
  • Mortensen P.B., Rapp H.T., 1998, Oxygen and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (L.) (Anthozoa, Scleractinia) : implications for determining of linear extension rates. Sarsia 83, 433–446. [Google Scholar]
  • Mortensen P.B., 2001, Aquarium observations on the deep-water coral Lophelia pertusa (L., 1958) (scleractinia) and selected associated invertebrates. Ophelia 54, 83–104. [CrossRef] [Google Scholar]
  • Orejas C., Gori A., Gili J.M., 2008, Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean sea maintained in aquaria. Coral Reefs 27, 255. [CrossRef] [Google Scholar]
  • Orejas C., Ferrier-Pagès C., Reynaud S., Gori A., Beraud E., Tsounis G., Allemand D., Gili J.M., 2011, Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Mar. Ecol. Prog. Ser. 429, 57–65. [CrossRef] [Google Scholar]
  • Petit G., Laubier L., 1962, Les canyons de la côte catalane, aperçu de nos connaissances et programmes de recherches. Océanographie géologique et géophysique de la Méditerranée occidentale. Coll. Natl. CNRS, pp. 89–93. [Google Scholar]
  • Pons-Branchu E., Hillaire-Marcel C., Deschamps P., Ghaleb B., Sinclar D., 2005, Early diagenesis impact on precise U-series dating of deep-sea corals : example of a 100–200 year old Lophelia pertusa sample from the northeast Atlantic. Geochim. Cosmochim. Acta 69, 4865–4879. [CrossRef] [Google Scholar]
  • Purser A., Bergmann M., Lundälv T., Ontrup J., Nattkemper T.W., 2009, Use of machine-learning algorithms for the automated detection of cold-water coral habitats : a pilot study. Mar. Ecol. Prog. Ser. 397, 241–251. [CrossRef] [Google Scholar]
  • Purser A., Larsson A.I., Thompsen L., van Oevelen D., 2010, The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates. J. Exp. Mar. Biol. Ecol. 395, 55–62. [CrossRef] [Google Scholar]
  • Reyss D., 1964, Contribution à l’étude du rech Lacaze-Duthiers vallée sous-marine des côtes du Roussillon. Vie Milieu 15, 1–46. [Google Scholar]
  • Reyss D., Soyer J., 1965, Etude de deux vallées sous-marines de la mer Catalane (compte rendu de plongées en soucoupe plongeante SP 300). Bull. Inst. Océanogr. Monaco 65. [Google Scholar]
  • Roberts J.M., Wheeler A.J., Freiwald A., 2006, Reefs of the deep : the biology and geology of cold-water coral ecosystems. Science 312, 543–547. [CrossRef] [PubMed] [Google Scholar]
  • Roberts J.M., Wheeler A., Freiwald A., Cairns S., 2009, Cold-water corals : the biology and geology of deep-sea coral habitats. Cambridge University Press, Cambridge. [Google Scholar]
  • Sabatier P., Reyss J.L., Hall-Spencer J., Colin C., Frank N., Tisnérat-Laborde N., Bordier L., Douville E., 2012, 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world’s largest cold-water coral reef. Biogeosciences 9, 1253–1265. [CrossRef] [Google Scholar]
  • Sanchez-Vidal A., Canals M., Calafat A.M., Lastras G., Pedrosa-Pamies R., Menendez M., Medina R., Company J.B., Hereu B., Romero J., Alcoverro T., 2012, Impacts on the deep-sea ecosystem by a severe coastal storm. PLoS ONE 7, e30395-11. [CrossRef] [PubMed] [Google Scholar]
  • Soffker A., Sloman K.A., Hall-Spencer J.M., 2011, In situ observations of fish associated with coral reefs off Ireland. Deep-Sea Res. Part I, 818–825. [CrossRef] [Google Scholar]
  • Thiem O., Ravagnan E., Fossa J.H., Berntsen J., 2006, Food supply mechanisms for cold-water corals along a continental shelf edge. J. Mar. Syst. 60, 207–219. [CrossRef] [Google Scholar]
  • White M., Bashmachnikov I., Aristegui J., Martins A., 2007, Physical processes and seamount productivity. In Pitcher T.J., Morato T., Hart P.B.J. (Eds.), Seamounts : ecology, fisheries and conservation. Oxford, Blackwell Publishing, pp. 65–84. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.