Free Access
Issue
Aquat. Living Resour.
Volume 25, Number 3, July-September 2012
Page(s) 241 - 249
DOI https://doi.org/10.1051/alr/2002019
Published online 30 July 2012
  • Aas Ø., Einum S., Klemetsen A., Skurdal J., 2011, Atlantic salmon ecology. Oxford, Wiley, Lucas M.C., Baras E., Migration of freshwater fishes, London, Blackwell Science. [Google Scholar]
  • Albrecht H.E., Borys M., Damaschke N., Tropea C., 2003, Laser doppler and phase doppler measurement techniques. Berlin, Heidelberg, New York, Springer. [Google Scholar]
  • Anneville O., Berthon V., Glippa O., Mahjoub M.S., Molinero J.C., Souissi S., 2011, Ontogenetic dietary changes of whitefish larvae : insights from field and experimental observations. Environ. Biol. Fishes 91, 27–38. [CrossRef] [Google Scholar]
  • Bell W.H., Terhune L.D.B., 1970, Water tunnel design for fisheries research. J. Fish. Res. Board Can. Tech. Rep. 195, 1–69. [Google Scholar]
  • Bernatchez L., Vuorinen J.A., Bodaly R.A., Dodson J.J., 1996, Genetic evidence for reproductive isolation and multiple origins of sympatric trophic ecotypes of whitefish (Coregonus). Evolution 50, 624–635. [CrossRef] [PubMed] [Google Scholar]
  • Borcherding J., Scharbert A., Urbatzka R., 2006, Timing of downstream migration and food uptake of juvenile North Sea houting stocked in the Lower Rhine and the Lippe (Germany). J. Fish Biol. 68, 1271–1286. [CrossRef] [Google Scholar]
  • Brett J.R., 1964, The respiratory metabolism and swimming performance of young sockeye salmon. J. Fish. Res. Board Can. 21, 1183–1226. [CrossRef] [Google Scholar]
  • Bushnell P.G., Jones D.R., Steffensen J.F., Schurmann H., 1994, Exercise metabolism in 2 species of cod in Arctic waters. Polar Biol. 14, 43–48. [CrossRef] [Google Scholar]
  • Cattanéo F., Hugueny B., Lamouroux N., 2003, Synchrony in brown trout, Salmo trutta, population dynamics : a “Moran effect” on early-life stages. Oikos 100, 43–54. [CrossRef] [Google Scholar]
  • Cote J., Fogarty S., Weinersmith K., Brodin T., Sih A., 2010, Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis). Proc. R. Soc. Lond. B. Biol. Sci. 277, 1571–1579. [CrossRef] [Google Scholar]
  • Crisp D.T., 1991, Stream channel experiments on downstream movement of recently emerged trout, Salmo trutta L., and salmon, S. salar L. – III. Effects of developmental stage and day and night upon dispersal. J. Fish Biol. 39, 371–381. [Google Scholar]
  • Crisp D.T., Hurley M.A., 1991a, Stream channel experiments on downstream movement of recently emerged trout, Salmo trutta L., and salmon, S. salar L. – I. Effect of four different water velocity treatments upon dispersal rate. J. Fish Biol. 39, 347–361. [Google Scholar]
  • Crisp D.T., Hurley M.A., 1991b, Stream channel experiment on downstream movement of recently emerged trout, Salmo trutta L. and salmon, S. salar L. – II. Effect of constant and changing velocities and of day and night upon dispersal rate. J. Fish Biol. 39, 363–370. [Google Scholar]
  • Dabrowski K.R., Kok L.Y., Takashima F., 1986, How efficiently do fish larvae and juveniles swim. Comp. Biochem. Physiol. A 85, 657–661. [CrossRef] [Google Scholar]
  • Dowling L.M., Godin J.G.J., 2002, Refuge use in a killifish : influence of body size and nutritional state. Can. J. Zool. 80, 782–788. [CrossRef] [Google Scholar]
  • Enders E.C., Boisclair D., Roy A.G., 2003, The effect of turbulence on the cost of swimming for juvenile Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 60, 1149–1160. [CrossRef] [Google Scholar]
  • Etheridge E.C., Adams C.E., Bean C.W., Durie N.C., Gowans A.R.D., Harrod C., Lyle A.A., Maitland P.S., Winfield I.J., 2012, Are phenotypic traits useful for differentiating among a priori Coregonus taxa. J. Fish Biol. 80, 387–407. [CrossRef] [PubMed] [Google Scholar]
  • Fabricius E., Lindroth A., 1954, Experimental observations on the spawning of whitefish, Coregonus lavaretus L., in the stream aquarium of the Hölle laboratory at River Indalsälven. Rep. Inst. Freshw. Res. Drottningholm 35, 105–112. [Google Scholar]
  • Farrell A.P., 2007, Cardiorespiratory performance during prolonged swimming tests with salmonids : a perspective on temperature effects and potential analytical pitfalls. Philos. Trans. R. Soc. B. 362, 2017–2030. [CrossRef] [Google Scholar]
  • Farrell A.P., 2008, Comparisons of swimming performance in rainbow trout using constant acceleration and critical swimming speed tests. J. Fish. Biol. 72, 693–710. [CrossRef] [Google Scholar]
  • Freyhof J., Schöter C., 2005, The houting Coregonus oxyrinchus (L.) (Salmoniformes : Coregonidae), a globally extinct species from the North Sea basin. J. Fish Biol. 67, 713–729. [CrossRef] [Google Scholar]
  • Gehrke P.C., Fidler L.E., Mense D.C., Randall D.J., 1990, A respirometer with controlled water-quality and computerized data acquisition for experiments with swimming fish. Fish Physiol. Biochem. 8, 61–67. [CrossRef] [PubMed] [Google Scholar]
  • Guan L., Snelgrove P.V.R., Gamperl A.K., 2008, Ontogenetic changes in the critical swimming speed of Gadus morhua (Atlantic cod) and Myoxocephalus scorpius (shorthorn sculpin) larvae and the role of temperature. J. Exp. Mar. Biol. Ecol. 360, 31–38. [CrossRef] [Google Scholar]
  • Hansen F.T., Rosshaug P.S., Murray C., Madsen M., Kristensen L., Møller B., 2008, Modellering af snæbelynglens migration. Vand & Jord 15, 1, 23–27 (in Danish). [Google Scholar]
  • Heggenes J., Traaen T., 1988, Downstream migration and critical water velocities in stream channels for fry of four salmonid species. J. Fish Biol. 32, 717–727. [CrossRef] [Google Scholar]
  • Hirzel A.H., Le Lay G., 2008, Habitat suitability modelling and niche theory. J. Appl. Ecol. 45, 1372–1381. [CrossRef] [Google Scholar]
  • Hoagman W.J., 1974, Vital activity parameters as related to the early life history of larval and post-larval lake whitefish Coregonus clupeaformis. In : Blaxter J.H.S. (eds.), The early life history of fishes, Berlin, Springer, pp. 547–558. [Google Scholar]
  • Hvidt C.B., Christensen I.G., 1990, Træk af nordsøsnæblens (Coregonus oxyrhynchus L.) biologi i Vidå-systemet (Master’s thesis). Aarhus, the Zoological Laboratory, University of Aarhus (in Danish). [Google Scholar]
  • Jacobsen M.W., Hansen M.M., Orlando L., Bekkevold D., Bernatchez L., Willerslev E., Gilbert M.T.P., 2012, Mitogenome sequencing reveals shallow evolutionary histories and recent divergence time between morphologically and ecologically distinct European whitefish (Coregonus spp.). Mol. Ecol., 21, 2727–2742. [CrossRef] [PubMed] [Google Scholar]
  • Jensen A.J., Johnsen B.O., 1999, The functional relationship between peak spring floods and survival and growth of juvenile Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). Funct. Ecol. 13, 778–785. [CrossRef] [Google Scholar]
  • Jensen A.R., Ejby-Ernst M., Møller B., Grøn P.N., 2002, Status for bestande af snæbel Coregonus oxyrhynchus i Vadehavsområdet 1989–1998. In : Pihl S., Laursen K. (eds.), Kortlægning af arter omfattet af EF-Habitatdirektivet 1997–2000 (Arbejdsrapport fra DMU nr. 167), Copenhagen, Danish Ministry of the Environment, pp. 15–55 (in Danish). [Google Scholar]
  • Jensen A.R., Nielsen H.T., Ejbye-Ernst M., 2003, National management plan for the houting. Ribe, Danish Ministry of the Environment, Forest and Nature Agency, the County of Sønderjylland and the County of Ribe. [Google Scholar]
  • Koumoundouros G., Ashton C., Xenikoudakis G., 2009, Ontogenetic differentiation of swimming performance in Gilthead seabream (Sparus aurata, Linnaeus 1758) during metamorphosis. J. Exp. Mar. Biol. Ecol. 370, 75–81. [CrossRef] [Google Scholar]
  • Liao J.C., 2007, A review of fish swimming mechanics and behaviour in altered flows. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 1973–1993. [Google Scholar]
  • Lindroth A., 1957, A study of the whitefish (Coregonus) of the Sundsvall Bay District. Rep. Inst. Freshwater Res. Drottningholm 38, 70–108. [Google Scholar]
  • Lucas M.C., Baras E., 2001, Migration of freshwater fishes, London, Blackwell Science. [Google Scholar]
  • Krause J., Loader S.P., Kirkman S., Ruxton, G.D., 1999, Refuge use by fish as a function of body weight changes. Acta Ethol. 2, 29–34. [CrossRef] [Google Scholar]
  • Krause J., Loader S.P., McDermott J., Ruxton G.D., 1998, Refuge use by fish as a function of body length-related metabolic expenditure and predation risks. Proc. R. Soc. Lond. B. Biol. Sci. 265, 2373–2379. [CrossRef] [Google Scholar]
  • Madsen M., Murray C., 2007, Modellering af de hydrauliske konsekvenser samt snæbellarveopvækstbetingelserne ved gennemførelse af snæbelprojekt i Hestholm og Nørresø. Hørsholm, Forest and Nature Agency – Lindet Statsskovdistrikt, Landsdelscenter Sydjylland (in Danish). [Google Scholar]
  • MacKenzie B.R., Kiørboe T., 1995, Encounter rates and swimming behavior of pause-travel and cruise larval fish predators in calm and turbulent environments. Limnol. Oceanogr. 40, 1278–1289. [CrossRef] [Google Scholar]
  • Mariani P., MacKenzie B.R., Visser A.W., Botte V., 2007, Individual-based simulations of larval fish feeding in turbulent environments. Mar. Ecol. Prog. Ser. 347, 155–169. [CrossRef] [Google Scholar]
  • Mesick C.F., 1988, Effects of food and cover on numbers of apache and brown trout establishing residency in artificial stream channels. Trans. Am. Fish. Soc. 117, 421–431. [CrossRef] [Google Scholar]
  • Østbye K., Bernatchez L., Næsje T.F., Himberg J.M., Hindar K., 2005, Evolutionary history of the European whitefish Coregonus lavaretus (L.) species complex as inferred from mtDNA phylogeography and gill-raker numbers. Mol. Ecol. 14, 4371–4387. [CrossRef] [PubMed] [Google Scholar]
  • Østbye K., Amundsen P.-A., Bernatchez L., Klemetsen A., Knudsen R., Kristoffersen R., Naesje T.F., Hindar K, 2006, Parallel evolution of ecomorphological traits in the European whitefish Coregonus lavaretus (L.) species complex during postglacial times. Mol. Ecol. 15, 3983–4001. [CrossRef] [PubMed] [Google Scholar]
  • Oufiero C.E., Garland Jr T., 2009, Repeatability and correlation of swimming performances and size over varying time-scales in the guppy (Poecilia reticulata). Funct. Ecol. 23, 969–978. [CrossRef] [Google Scholar]
  • Peake S., McKinley R.S., 1998, A re-evaluation of swimming performance in juvenile salmonids relative to downstream migration. Can. J. Fish. Aquat. Sci. 55, 682–687. [CrossRef] [Google Scholar]
  • Pécseli H.L., Trulsen J., Fiksen Ø., 2010, Predator-prey contact and capture rates in turbulent water : analytical models and numerical tests. Prog. Oceanogr. 85, 171–179. [CrossRef] [Google Scholar]
  • Poulsen S.B., Svendsen J.C., Jensen L.F., Schulz C., Jäger-Kleinicke T., Schwarten H., 2010, Effects of food deprivation on refuge use and dispersal in juvenile North Sea houting Coregonus oxyrinchus under experimental conditions. J. Fish Biol. 77, 1702–1708. [CrossRef] [PubMed] [Google Scholar]
  • Pusey B.J., Arthington A.H., 2003, Importance of the riparian zone to the conservation and management of freshwater fish : a review. Mar. Freshw. Res. 54, 1–16. [CrossRef] [Google Scholar]
  • Rasmussen P.C., 2004, Opvækstområder for snæbel i Vidå og Ribe Å. Ribe, The County of Sønderjylland, The County of Ribe and Forest and Nature Agency (in Danish). [Google Scholar]
  • Rehage J.S., Sih A., 2004, Dispersal behavior, boldness, and the link to invasiveness : a comparison of four Gambusia species. Biol. Invasions 6, 379–391. [CrossRef] [Google Scholar]
  • Reidy S.P., Kerr S.R., Nelson J.A., 2000, Aerobic and anaerobic swimming performance of individual Atlantic cod. J. Exp. Biol. 203, 347–357. [PubMed] [Google Scholar]
  • Rice W.R., 1989, Analyzing tables of statistical tests. Evolution 43, 223–225. [CrossRef] [PubMed] [Google Scholar]
  • Saltveit S.J., Bremnes T., Lindås O.R., 1995, Effect of sudden increase in discharge in a large river on newly emerged Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) fry. Ecol. Freshw. Fish 4, 168–174. [CrossRef] [Google Scholar]
  • Sih A., 1997, To hide or not to hide? Refuge use in a fluctuating environment. Trend. Ecol. Evol. 12, 375–376. [CrossRef] [Google Scholar]
  • Sokal R.R., Rohlf F.J., 1995, Biometry. 3rd edition, New York, W.H. Freeman and Company. [Google Scholar]
  • Stoltze M., Pihl S., 1998, Rødliste 1997 over planter og dyr i Danmark, Ministry of the Environment, National Environmental Research Institute and Forest and Nature Agency, Denmark (in Danish). [Google Scholar]
  • Taguchi M., Liao J.C., 2011, Rainbow trout consume less oxygen in turbulence : the energetics of swimming behaviours at different speeds, J. Exp. Biol. 214, 428–1436. [CrossRef] [Google Scholar]
  • Thomsen D.S., 2003, Udvikling af saltvandstolerance hos snæblen (Coregonus oxyrhynchus) (Master’s thesis). Aarhus, Institute of Biology, University of Southern Denmark (in Danish). [Google Scholar]
  • Tritico H.M., Cotel A.J., 2010, The effects of turbulent eddies on the stability and critical swimming speed of creek chub (Semotilus atromaculatus). J. Exp. Biol. 213, 2284–2293. [CrossRef] [PubMed] [Google Scholar]
  • Vehanen T., Bjerke P.L., Heggenes J., Huusko A., Mäki-Petäys A., 2000, Effect of fluctuating flow and temperature on cover type selection and behaviour by juvenile brown trout in artificial flumes. J. Fish Biol. 56, 923–937. [CrossRef] [Google Scholar]
  • Videler J.J., 1993, Fish swimming. 1st edition, London, Chapman & Hall. [Google Scholar]
  • Vonlanthen P., Bittner D., Hudson A.G., Young K.A., Müller R., Lundsgaard-Hansen B., Roy D., Di Piazza S., Largiader C.R., Seehausen O., 2012, Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482, 357–362. [CrossRef] [PubMed] [Google Scholar]
  • Webb P.W., Kostecki P.T., Stevens E.D., 1984, The effect of size and swimming speed on locomotor kinematics of rainbow trout. J. Exp. Biol. 109, 77–95. [Google Scholar]
  • Wenger S.J., Isaak D.J., Luce C.H., Neville H.M., Fausch K.D., Dunham J.B., Dauwalter D.C., Young M.K., Elsner M.M., Rieman B.E., Hamlet A.F., Williams J.E., 2011, Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proc. Natl. Acad. Sci. 108, 14175–14180. [Google Scholar]
  • Wilzbach M.A., 1985, Relative roles of food abundance and cover in determining the habitat distribution of stream-dwelling cutthroat trout (Salmo-Clarki). Can. J. Fish. Aquat. Sci. 42, 1668–1672. [CrossRef] [Google Scholar]
  • Wolter C., Arlinghaus R., 2003, Navigation impacts on freshwater fish assemblages : the ecological relevance of swimming performance. Rev. Fish Biol. Fish. 13, 63–89. [Google Scholar]
  • Wootton R.J., 1994, Energy allocation in the threespine stickleback. In : Bell M.A., Foster S.A. (eds.), the evolutionary biology of the threespine stickleback. Oxford, Science Publications, pp. 116–143. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.