Free Access
Issue
Aquat. Living Resour.
Volume 23, Number 1, January-March 2010
Page(s) 95 - 101
Section Regular articles
DOI https://doi.org/10.1051/alr/2010004
Published online 17 March 2010
  • Begg G.A., Waldman J.R., 1999, A holistic approach to fish stock identification. Fish. Res. 43, 35–44. [Google Scholar]
  • Begg G.A., Friedland K.D., Pearce J.B., 1999, Stock identification and its role in stock assessment and fisheries management: an overview. Fish. Res. 43, 1-8. [Google Scholar]
  • Cadrin S.X., 2000, Advances in morphometric analysis of fish stock structure. Rev. Fish Biol. Fish. 10, 91–112. [Google Scholar]
  • Cadrin S.X., Friedland K.D., Waldman J.R., 2004, Stock identification methods: Applications inf fishery science. Academic Press, New York. [Google Scholar]
  • Carpenter K.E. (ed.), 2002, The living marine resources of the Western Central Atlantic. Volume 1: Introduction, molluscs, crustaceans, hagfishes, sharks, batoid fishes, and chimaeras. FAO Species Identification Guide for Fishery Purposes and American Society of Ichthyologists and Herpetologists Special Publication No. 5. Rome, FAO. [Google Scholar]
  • Dall W., Hill B.J., Rothlisberg P.C., Staples D.J., 1990, The biology of the Penaeidae. Adv. Mar. Biol. 27, 1–489. [Google Scholar]
  • García S., Le Reste L., 1987, Ciclos vitales, dinámica, explotación y ordenación de las poblaciones de camarones peneidos costeros. FAO Doc. Tec. Pesca, Rome, No. 203. [Google Scholar]
  • Gotelli N.J., Ellison A.M., 2004, A Primer of Ecological statistics. Sinauer Associates. [Google Scholar]
  • Guillet R, 2008, Global study of shrimp fisheries. FAO Fisheries Technical Paper Rome, No. 475. [Google Scholar]
  • Hilborn R.F., Walters C.J., 1992, Quantitative fisheries stock assessment. Choice, dynamics and uncertainty. Chapman and Hall, New York. [Google Scholar]
  • Jennings S., Kaiser M.J., Reynolds J.D., 2001, Marine fisheries ecology. Blackwell Publishing. [Google Scholar]
  • King M., 2007, Fisheries Biology, Assessment and Management. Wiley-Blackwell. [Google Scholar]
  • Kristoffersen J.B., Magoulas A., 2008, Population structure of anchovy Engraulis encrasicolus L. in the Mediterranean Sea inferred from multiple methods. Fish. Res. 91, 187–195. [CrossRef] [Google Scholar]
  • Lee S.Y., 1999, Tropical mangrove ecology: physical and biotic factors influencing ecosystem structure and function. Austr. J. Ecol. 24, 355–366. [CrossRef] [Google Scholar]
  • Loneragan N.R., Bunn S.E., 1999, River flows and estuarine ecosystems: implications for coastal fisheries from a review and a case study of the Logan River, south-east Queensland. Aust. J. Ecol. 24, 431–440. [CrossRef] [Google Scholar]
  • Manly B.F.J., 2004, Multivariate Statistical Methods: A Primer. Third Edition. Chapman & Hall. Manly, B.F.J., 2006, Randomization, Bootstrap and Monte Carlo Methods in Biology, Third Edition, Chapman & Hall. [Google Scholar]
  • May-Kú M.A., Ordóñez-López U., Defeo O., 2006, Morphometric differentiation in small juveniles of the pink spotted shrimp (Farfantepenaeus brasiliensis) and the southern pink shrimp (F. notialis) in the Yucatan Peninsula, Mexico. Fish. Bull. 104, 306–310. [Google Scholar]
  • Minello T.J., Zimmerman R.J., 1991, The role of estuarine habitats in regulating growth and survival of juvenile penaeid shrimp. In: Deloach P.F., Dougherty W.J., Davidson M.A. (Eds.) Frontiers of shrimp research. Elsevier, Amsterdam, pp. 1–16. [Google Scholar]
  • Pinheiro A., Teixeira C.M., Rego A.L., Marques J.F., Cabral H.N., 2005, Genetic and morphological variation of Solea lascaris (Risso, 1810) along the Portuguese coast. Fish. Res. 73, 67-78. [CrossRef] [Google Scholar]
  • Quinn II T.J., Deriso R.B., 1999, Quantitative fish dynamics. Oxford University Press, New York. [Google Scholar]
  • Quiroz J.C., Wiff R., Céspedes R., 2007, Reproduction and population aspects of the yellownose skate, Dipturus chilensis (Pisces, Elasmobranchii: Rajidae), from southern Chile. J. Appl. Ichthyol. 1–6. [Google Scholar]
  • Roa R., Enst, B., Tapia F., 1999, Estimation of size at sexual maturity: an evaluation of analytical and resampling procedures. Fish. Bull. 97, 570–580. [Google Scholar]
  • Robainas-Barcia A., Espinosa-López G., Hernández D., García-Machado E., 2005, Temporal variation of the population structure and genetic diversity of Farfantepenaeus notialis assessed by allozyme loci. Mol. Ecol. 14, 2933-2942. [CrossRef] [PubMed] [Google Scholar]
  • Robainas-Barcia A., Blanco G., Sanchez J.A., Monnerot M., Solignac M., García-Machado E., 2005, Spatiotemporal genetic differentiation of Cuban natural populations of the pink shrimp Farfantepenaeus notialis. Genetica 133, 283–294. [CrossRef] [Google Scholar]
  • Salini J.P., Milton D.A., Rahman M.J., Hussain M.G., 2004, Allozyme and morphological variation throughout the geographic range of the tropical shad, hilsa Tenualosa ilisha. Fish. Res. 66, 53–69. [CrossRef] [Google Scholar]
  • Swain D.P., Foote C.J., 1999, Stocks and chameleons: the use of phenotypic variation in stock identification. Fish. Res. 43, 113–128. [CrossRef] [Google Scholar]
  • Tudela S., 1999, Morphological variability in a Mediterranean, genetically homogeneous population of the European anchovy, Engraulis encrasicolus. Fish. Res. 42, 229–243. [CrossRef] [Google Scholar]
  • Tzeng T.D., Chiu C.S., Yeh S.Y., 2001, Morphometric variation in red-spot prawn (Metapenaeopsis barbata) in different geographic waters off Taiwan. Fish. Res. 53, 211–217. [CrossRef] [Google Scholar]
  • Tzeng T.D., Yeh S.Y., 2002, Multivariate allometric comparisons for kuruma shrimp (Penaeus japonicus) off Taiwan. Fish. Res. 59, 279–288. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.