Free Access
Issue
Aquat. Living Resour.
Volume 22, Number 1, January-March 2009
Page(s) 93 - 103
DOI https://doi.org/10.1051/alr/2009009
Published online 08 April 2009
  • Arias C.A., Del Bubba M., Brix H., 2001, Phosphorous removal by sands for use as media in subsurface flow constructed reed beds. Water Res. 35, 1159–1168. [CrossRef] [PubMed] [Google Scholar]
  • Bergheim A., Asgard T., 1996, Waste production from aquaculture. In: Baird D.J., Beveridge M.C.M., Kelly L.A., Muir J.F. (Eds.) Aquaculture and water resource management. Blackwell Science Ltd., Oxford, pp. 50–80. [Google Scholar]
  • Bergheim A., Sanni S., Indrevik G., Holland P., 1993, Sludge removal from salmonid tank effluent using rotating microsieves. Aquac. Eng. 12, 97–109. [CrossRef] [Google Scholar]
  • Bergheim A., Cripps S.J., Liltved H., 1998, A system for the treatment of sludge from land-based fish-farms. Aquat. Living Resour. 11, 279–287. [CrossRef] [EDP Sciences] [Google Scholar]
  • Boaventura R., Pedro A.M., Coimbra J., Lencastre E., 1997, Trout farm effluents: characterization and impact an the receiving streams. Environ. Pollut. 95, 379–387. [CrossRef] [PubMed] [Google Scholar]
  • Brämick U., 2007, Jahresbericht zur Deutschen Binnefischerei 2006, http://www.bmelv.de/nn_751680/SharedDocs/downloads/05-Fischerei/JahresberichtBinnenfischerei2007,templateId=raw,property=publicationFile.pdf/JahresberichtBinnenfischerei2007.pdf. [Google Scholar]
  • Brinker A., 2005, Suspended solids in flow-through aquaculture – dynamics and management. Hartung-Gorre Verlag Konstanz. [Google Scholar]
  • Brinker A., Rösch R., 2005, Factors determining the size of suspended solids in a flow-through fish farm. Aquac. Eng. 33, 1–19. [CrossRef] [Google Scholar]
  • Brinker A., Schröder H.G., Rösch R., 2005a, A high-resolution technique to size suspended solids in flow-through fish farms. Aquac. Eng. 32, 325–341. [CrossRef] [Google Scholar]
  • Brinker A., Koppe W., Rösch R., 2005b, Optimized effluent treatment by stabilized trout faeces. Aquaculture 249, 125–144. [CrossRef] [Google Scholar]
  • Brinker A., Koppe W., Rösch R., 2005c, Optimizing trout farm effluent treatment by stabilizing trout feces – A field trial. N. Am. J. Aquac. 67, 244–258. [CrossRef] [Google Scholar]
  • Brix H., 1997, Do macrophytes play a role in constructed treatment wetlands? Water Sci. Technol. 35, 11–17. [Google Scholar]
  • Bureau D.P., Cho C.Y., 1999, Phosphorus utilization by rainbow trout (Oncorhynchus mykiss): estimation of dissolved phosphorus waste output. Aquaculture 179, 127–140. [CrossRef] [Google Scholar]
  • Camargo J.A., 1994, The importance of biological monitoring for the ecological risk assessment of freshwater pollution: A case study. Environ. Internat. l 20, 229–238. [CrossRef] [Google Scholar]
  • Chen S., Timmons M.B., Bisogni Jr. J.J., Aneshansley D.J., 1993. Suspended-solids removal by foam fractionation. Progress. Fish-Cult. 55, 69–75. [Google Scholar]
  • Cho C.Y., Bureau D.P., 1997, Reduction of waste output from salmonid aquaculture through feeds and feeding. Progress. Fish-Cult. 59, 155–160. [CrossRef] [Google Scholar]
  • Cripps S.J., 1994, Minimizing outputs: treatment. J. Appl. Ichthyol. 10, 284–294. [CrossRef] [Google Scholar]
  • Cripps S.J., Kelly L.A., 1996, Reductions in wastes from Aquaculture. In: Baird D.J., Beveridge M.C.M., Kelly L.A., Muir J.F. (Eds.), Aquaculture and water resource management. Blackwell Science Ltd., Oxford, pp. 166–201. [Google Scholar]
  • Cripps S.J., Bergheim A., 2000, Solids management and removal for intensive land-based aquaculture production systems. Aquac. Eng. 22, 33–56. [Google Scholar]
  • Del Bubba M., Arias C.A., Brix H., 2003, Phosphorous absorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm. Water Res. 37, 3390–3400. [Google Scholar]
  • DIN, 2006, Deutsches Einheitsverfahren zur Wasser-, Abwasser-, und Schlamm-Untersuchung, physikalische, chemische, biologische und mikrobiologische Verfahren. Wasserchemische Gesellschaft – Fachgruppe in der Gesellschaft Deutscher Chemiker, NormenausschußWasserwesen im Deutschen Institut für Normung E.V. (Ed.), Wiley Berlin, Wien, Zürich. [Google Scholar]
  • Doughty C.R., McPhail C.D., 1995, Monitoring the environmental impacts and consent compliance of freshwater fish farms. Aquac. Res. 26, 557–565. [CrossRef] [Google Scholar]
  • European Commission, 2006, Facts and figures on the CFP. Basic data on the Common Fisheries Policy. Office for Official Publications of the European Communities, Luxembourg. [Google Scholar]
  • FAO, 2006, The state of world fisheries and aquaculture. http://www.fao.org. [Google Scholar]
  • Foy R.H., Rosell R., 1991, Loadings and phosphorus from a Northern Ireland fish farm. Aquaculture 96, 17–30. [CrossRef] [Google Scholar]
  • Green J.A., Hardy R.W., Brannon E.L., 2002, Effects of dietary phosphorus and lipid levels on utilization and excretion of phosphorus and nitrogene by rainbow trout (Onchorhynchus mykiss). 1. Laboratory-scale study. Aquac. Nutr. 8, 279–290. [Google Scholar]
  • Henderson J.P., Bromage N.R., 1988, Optimisinig the removal of suspended solids from aquacultural effluents in settlement lakes. Aquac. Eng. 7, 167–181. [CrossRef] [Google Scholar]
  • Lawson T.B., 1995, Fundamentals of aquacultural engineering. Chapman and Hall, New York. Lefebvre S., Bacher C., Meuret A., Hussenot J., 2001, Modeling approach of nitrogen and phosphorus exchanges at the sediment-water interface of an intensive fishpond system. Aquaculture 195, 279–297. [CrossRef] [Google Scholar]
  • Loch D.D., West J.L., Perlmutter D.G., 1996, The effect of trout farm effluent on the taxa richness of benthic macroinvertebrates. Aquaculture 147, 37–55. [CrossRef] [Google Scholar]
  • MacAllister Elliot and Partners LTD., 1999, Forward study of community aquaculture, summary report. European Commission Fisheries Directorate General. [Google Scholar]
  • Maillard V.M., Boardman G.D., Nyland J.E., Kuhn D.D., 2005, Water quality and sludge characterization at raceway-system trout farms. Aquac. Eng. 33, 271–284. [CrossRef] [Google Scholar]
  • Milden A., Redding T., 1998, Environmental management for Aquaculture. Chapman and Hall Aquaculture Series 2. Chapman and Hall, London, Weinheim, New York, Philadelphia. [Google Scholar]
  • O'Bryen P.J., Lee C.-S., 2003, Management of aquaculture effluents workshop discussion summary. Aquaculture 266, 227–242. [CrossRef] [Google Scholar]
  • Piedrahita R.H., 2003, Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 226, 35–44. [CrossRef] [Google Scholar]
  • Platzer C., 1999, Design recommendations for subsurface flow constructed wetlands for nitrification and dentirification. Water Sci. Technol. 40, 257–263. [Google Scholar]
  • Rennert B., 1994, Water pollution by a land-based trout farm. J. Appl. Ichthyol. 10, 373–378. [CrossRef] [Google Scholar]
  • Rolauffs P., Stubauer I., Zahradkova S., Brabec K., Moog O., 2004, Integration of the saprobic system into the European Union Water Framework Direktive. Hydrobiologia 516, 285–298. [CrossRef] [Google Scholar]
  • Roque d'Orbcastel E., Blancheton J.-P., Boujard T., Aubin J., Moutounet Y., Przybyla C., Belaud A., 2008, Comparison of two methods for evaluating waste of a flow through trout farm. Aquaculture 274, 72–79. [CrossRef] [Google Scholar]
  • Rosenthal H., 1994, Fish farm effluents and their control in EC countries: summary of an workshop. J. Appl. Ichthyol. 10, 215–224. [CrossRef] [Google Scholar]
  • Roy P.K., Lall S.P., 2004, Urinary phosphorous excretion in haddock, Melanogrammus aeglefinus (L.) and Atlantic salmon, Salmo salar (L.). Aquaculture 233, 369–382. [Google Scholar]
  • Schreckenbach K., Knösche R., Ebert K., 2001, Nutrient and energy content of freshwater fishes. J. Appl. Ichthyol. 17, 142–144. [CrossRef] [Google Scholar]
  • Schulz C., Gelbrecht J., Rennert B., 2003, Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow. Aquaculture 217, 207–221. [CrossRef] [Google Scholar]
  • Selong J.H., Helfrich L.A., 1998, Impacts of trout culture effluent on water quality and biotic communities in Virginia headwater streams. Progress. Fish-Cult. 60, 247–262. [Google Scholar]
  • Seo D.C., Cho J.S., Lee H.J., Heo J.S., 2005, Phosphorous retention capacity of filter media for estimating the longevity of constructed wetland. Water Res. 39, 2445–2457. [CrossRef] [PubMed] [Google Scholar]
  • Sindilariu P.D., 2007, Reduction in effluent nutrient loads from flow-through facilities for trout production: a review. Aquac. Res. 38, 1005–1036. [Google Scholar]
  • Sindilariu P-D., Schulz C., Reiter R., 2007, Treatment of flow-through trout aquaculture effluent in constructed wetland. Aquaculture 270, 92–104. [CrossRef] [Google Scholar]
  • Sindilariu P.D., Wolter C., Reiter R., 2008, Constructed wetlands as a treatment method for effluents from intensive trout farms. Aquaculture 277, 179–184. [CrossRef] [Google Scholar]
  • Stewart N.T., Boardman G.D., Helfrich L.A., 2006, Characterization of nutrient leaching rates from settled rainbow trout (Oncorhynchus mykiss) sludge. Aquac. Eng. 35, 191–198. [CrossRef] [Google Scholar]
  • Stottmeister U., Wießner A., Kuschk P., Kappelmeyer U., Kästner M., Bederski O., Müller R.A., Moormann H., 2003, Effect of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv. 22, 93–117. [CrossRef] [PubMed] [Google Scholar]
  • Tanner C.C., Sukias J.P., 1995, Accumulation of organic solids in gravel-bed constructed wetlands. Water Sci. Technol. 32, 229–239. [CrossRef] [Google Scholar]
  • Tchobanoglous G., Burton F.L., Stensel H.D., 2003, Wastewater engineering: treatment and reuse, 4th edn., McGraw-Hill Inc., New York. [Google Scholar]
  • True B., Johnson W., Chen S., 2004, Reducing phosphorous discharge from flow-through aquaculture I: facility and effluent characterization. Aquac. Eng. 32, 129–144. [Google Scholar]
  • Varadi L., 2001, Review of trends in the development of European inland aquaculture linkages with fisheries. Fish. Manage. Ecol. 8, 453–462. [CrossRef] [Google Scholar]
  • Viadero Jr, R.C., Cunningham J.H., Semmens K.J., Tierney A.E., 2005, Effluent and production impacts of flow-through aquaculture operations in West Virginia. Aquac. Eng. 33, 258–270. [CrossRef] [Google Scholar]
  • von Tümpling W., Friedrich G., 1999, Methoden der Biologischen Gewässeruntersuchung, Band 2 – Biologische Gewässeruntersuchung. Gusav Fischer, Jena. [Google Scholar]
  • Vymazal J., 2005, Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecol. Eng. 25, 478–490. [Google Scholar]
  • Wedekind H., 1996, Ermittlung der Leistungsparameter verschiedener Methoden und Techniken zur Reduzierung der Umweltbelastung durch offene Aquakulturanlagen. Forschungsbericht des Instituts für Binnenfischerei Potsdam-Sacrow. [Google Scholar]
  • Wheaton F.W, Singh S., 1999, Aquacultural Systems. In: Bartali H., Wheaton F. (Eds.), CIGR Handbook of agricultural engineering, vol. II. American Society of Agricultural Engineers, St. Joseph, MI, pp. 211–217. [Google Scholar]
  • Willoughby S., 1999, Manual of salmonid farming. Fishing News Books, Blackwell Science, Oxford. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.