Free Access
Issue
Aquat. Living Resour.
Volume 18, Number 3, July-September 2005
Page(s) 291 - 300
DOI https://doi.org/10.1051/alr:2005033
Published online 15 November 2005
  • Alibert C., Kinsley L., Fallon S.J., McCulloch M.T., Berkelmans R., McAllister F., 2003, Source of trace element variability in Great Barrier Reef corals affected by the Burdekin flood plumes. Geochim. Cosmochim. Acta 67, 231-246. [CrossRef] [Google Scholar]
  • Allen G.R., Midgley S.H., Allen M., 2002, Field guide to freshwater fishes of Australia. Western Australian Museum, Perth. [Google Scholar]
  • Arai T., Goto A., Miyazaki N., 2003a, Use of otolith microchemistry to estimate the migratory history of the threespine stickleback, Gasterosteus aculeatus. J. Mar. Biol. Assoc. UK 83, 223-230. [Google Scholar]
  • Arai T., Hayano H., Asami H., Miyazaki N., 2003b, Coexistence of anadromous and lacustrine life histories of the shirauo, Salangichthys microdon. Fish. Oceanogr. 12, 134-139. [CrossRef] [Google Scholar]
  • Arai T., Limbong D., Otake T., Tsukamoto K., 1999, Metamorphosis and inshore migration of tropical eels Anguilla spp. in the Indo-Pacific. Mar. Ecol. Prog. Ser. 182, 283-293. [CrossRef] [Google Scholar]
  • Babaluk J. A., Campbell J. L., Evans C. L., Halden N. M., Mejia S. R., Nejedly Z., Reist J.D., Teesdale W. J., 2002, Micro-PIXE analysis of strontium in Arctic char, Salvelinus alpinus, otoliths from Quttinirpaaq National Park, Nunavut, Canada. Nuclear Instruments Methods Physics Res. B: Beam Interactions with Materials and Atoms 189, 190-195. [CrossRef] [Google Scholar]
  • Bath G.E., Thorrold S.R., Jones C.M., Campana S.E., McLaren J.W., Lam J.W.H., 2000, Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta 64, 1705-1714. [CrossRef] [Google Scholar]
  • Brazner J.C., Campana S.E., Tanner D.K., 2004, Habitat fingerprints for Lake Superior coastal wetlands derived from elemental analysis of yellow perch otoliths. Trans. Am. Fish. Soc. 133, 692-704. [CrossRef] [Google Scholar]
  • Bronte C.R., Hesselberg R.J., Shoesmith J.A., Hoff M.H., 1996, Discrimination among spawning concentrations of Lake Superior lake herring based on trace element profiles in sagittae. Trans. Am. Fish. Soc. 125, 852-859. [CrossRef] [Google Scholar]
  • Campana S.E., 1999, Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263-297. [CrossRef] [Google Scholar]
  • Campana S.E., Chouinard G.A., Hanson J.M., Frechet A., Brattey J., 2000, Otolith elemental fingerprints as biological tracers of fish stocks. Fish. Res. 46, 343-357. [CrossRef] [Google Scholar]
  • Chang C.W., Iizuka Y., Tzeng W.N., 2004, Migratory environmental history of the grey mullet Mugil cephalus as revealed by otolith Sr:Ca ratios. Mar. Ecol. Prog. Ser. 269, 277-288. [CrossRef] [Google Scholar]
  • Chesney E.J., McKee B.M., Blanchard T., Chan L.-H., 1998, Chemistry of otoliths from juvenile menhaden Brevoortia patronus: Evaluating strontium, strontium:calcium and strontium isotope ratios as environmental indicators. Mar. Ecol. Prog. Ser. 171, 261-273. [CrossRef] [Google Scholar]
  • Closs G.P., Smith M., Barry B., Markwitz A., 2003, Non-diadromous recruitment in coastal populations of common bully (Gobiomorphus cotidianus). N.Z. J. Mar. Freshw. Res. 37, 301-313. [Google Scholar]
  • Coffey M., Dehairs F., Collette O., Luther G., Church T., Jickells T., 1997, The behaviour of dissolved barium in estuaries. Est. Coast. Shelf Sci. 45, 113-121. [Google Scholar]
  • David B., Chadderton L., Closs G., Barry B., Markwitz A., 2004, Evidence of flexible recruitment strategies in coastal populations of giant kokopu (Galaxias argenteus), pp. 23, Department of Conservation, Wellington. [Google Scholar]
  • de Villiers S., 1999, Seawater strontium and Sr/Ca variability in the Atlantic and Pacific oceans. Earth Planet. Sci. Lett. 171, 623-634. [Google Scholar]
  • Douglas G.B., Gray C.M., Hart B.T., Beckett R., 1995, A strontium isotopic investigation of the origin of suspended particulate matter (SPM) in the Murray-Darling River system, Australia. Geochim. Cosmochim. Acta 59, 3799-3815. [CrossRef] [Google Scholar]
  • Elsdon T.E., Gillanders B.M., 2002, Interactive effects of temperature and salinity on otolith chemistry: Challenges for determining environmental histories of fish. Can. J. Fish. Aquat. Sci. 59, 1796-1808. [CrossRef] [Google Scholar]
  • Elsdon T.E., Gillanders B.M., 2003, Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri. Mar. Ecol. Prog. Ser. 260, 263-272. [CrossRef] [Google Scholar]
  • Elsdon T.E., Gillanders B.M., 2004, Fish otolith chemistry influenced by exposure to multiple environmental variables. J. Exp. Mar. Biol. Ecol. 313, 269-284. [CrossRef] [Google Scholar]
  • Elsdon T.E., Gillanders B.M., 2005, Alternative life-history patterns of estuarine fish: Barium in otoliths elucidates freshwater residency. Can. J. Fish. Aquat. Sci. 62, 1143-4452. [CrossRef] [Google Scholar]
  • Fowler A.J., Campana S.E., Jones C.M., Thorrold S.R., 1995, Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using solution-based ICPMS. Can. J. Fish. Aquat. Sci. 52, 1421-1430. [CrossRef] [Google Scholar]
  • Gillanders B.M., 2002, Connectivity between juvenile and adult fish populations: Do adults remain near their recruitment estuaries? Mar. Ecol. Prog. Ser. 240, 215-223. [CrossRef] [Google Scholar]
  • Gillanders B.M., Kingsford M.J., 1996, Elements in otoliths may elucidate the contribution of estuarine recruitment to sustaining coastal reef populations of a temperate reef fish. Mar. Ecol. Prog. Ser. 141, 13-20. [CrossRef] [Google Scholar]
  • Gillanders B.M., Ferrell D.J., Andrew N.L., 2001, Estimates of movement and life-history parameters of yellowtail kingfish (Seriola lalandi): How useful are data from a cooperative tagging programme? Mar. Freshw. Res. 52, 179-192. [CrossRef] [Google Scholar]
  • Gillanders B.M., 2005, Using elemental chemistry of fish otoliths to determine Connectivity between estuarine and coastal habitats. Est. Coast. Shelf Sci. 64, 47-57. [CrossRef] [Google Scholar]
  • Guay C.K., Falkner K.K., 1998, A survey of dissolved barium in the estuaries of major Arctic rivers and adjacent seas. Cont. Shelf Res. 18, 859-882. [CrossRef] [Google Scholar]
  • Hendy E.J., Gagan M.K., Alibert C.A., McCulloch M.T., Lough J.M., Isdale P.J., 2002, Abrupt decrease in tropical Pacific sea surface salinity at end of little ice age. Science 295, 1511-1514. [CrossRef] [PubMed] [Google Scholar]
  • Hesslein R.H., Capel M.J., Fox D.E., Hallard K.A., 1991, Stable isotopes of sulfur, carbon, and nitrogen as indicators of trophic level and fish migration in the Lower Mackenzie River basin, Canada. Can. J. Fish. Aquat. Sci. 48, 2258-2265. [CrossRef] [Google Scholar]
  • Hoff G.R., Fuiman L.A., 1995, Environmentally induced variation in elemental composition of red drum (Sciaenops ocellatus) otoliths. Bull. Mar. Sci. 56, 578-591. [Google Scholar]
  • Howland K.L., Tonn W.M., Babaluk J.A., Tallman R.F., 2001, Identification of freshwater and anadromous inconnu in the Mackenzie River system by analysis of otolith strontium. Trans. Am. Fish. Soc. 130, 725-741. [CrossRef] [Google Scholar]
  • Ingram B.L., Sloan D., 1992, Strontium isotopic composition of estuarine sediments as paleosalinity-paleoclimate indicator. Science 255, 68-72. [CrossRef] [PubMed] [Google Scholar]
  • Ingram B.L., Weber P.K., 1999, Salmon origin in California's Sacramento-San Joaquin river system as determined by otolith strontium isotopic composition. Geology 27, 851-854. [CrossRef] [Google Scholar]
  • Jessop B.M., Shiao J.-C., Jizuka Y., Tzeng W.N., 2002, Migratory behaviour and habitat use by American eels Anguilla rostrata as revealed by otolith microchemistry. Mar. Ecol. Prog. Ser. 233, 217-229. [CrossRef] [Google Scholar]
  • Kafemann R., Adlerstein S., Neukamm R., 2000, Variation in otolith strontium and calcium ratios as an indicator of life-history strategies of freshwater fish species within a brackish water system. Fish. Res. 46, 313-325. [CrossRef] [Google Scholar]
  • Kalish J.M., 1990, Use of otolith microchemistry to distinguish the progeny of sympatric anadromous and non-anadromous salmonids. Fish. Bull. 88, 657-666. [Google Scholar]
  • Katayama S., Radtke R.L., Omori M., Shafer D.J., 2000, Coexistence of anadromous and resident life history styles of pond smelt, Hypomesus nipponensis, in Lake Ogawara, Japan, as determined by analyses of otolith structure and strontium: calcium ratios. Environ. Biol. Fish. 58, 195-201. [CrossRef] [Google Scholar]
  • Kawakami Y., Mochioka N., Morishita K., Tajima T., Nakagawa H., Toh H., Nakazono A., 1998, Factors influencing otolith strontium/calcium ratios in Anguilla japonica elvers. Environ. Biol. Fish. 52, 299-303. [CrossRef] [Google Scholar]
  • Kennedy B.P., Blum J.D., Folt C.L., Nislow K.H., 2000, Using natural strontium isotopic signatures as fish markers: Methodology and application. Can. J. Fish. Aquat. Sci. 57, 2280-2292. [CrossRef] [Google Scholar]
  • Kennedy B.P., Folt C.L., Blum J.D., Chamberlain C.P., 1997, Natural isotope markers in salmon. Nature 387, 766-767. [CrossRef] [Google Scholar]
  • Kennedy B.P., Klaue A., Blum J.D., Folt C.L., Nislow K.H., 2002, Reconstructing the lives of fish using Sr isotopes in otoliths. Can. J. Fish. Aquat. Sci. 59, 925-929. [CrossRef] [Google Scholar]
  • Kimura R., Secor D.H., Houde E.D., Piccoli P.M., 2000, Up-estuary dispersal of young-of-the-year bay anchovy Anchoa mitchilli in the Chesapeake Bay: Inferences from microprobe analysis of strontium in otoliths. Mar. Ecol. Prog. Ser. 208, 217-227. [CrossRef] [Google Scholar]
  • Kotake A., Arai T., Ohji M., Yamane S., Miyazaki N., Tsukamoto K., 2004, Application of otolith microchemistry to estimate the migratory history of Japanese eel Anguilla japonica on the Sanriku coast of Japan. J. Appl. Ichthyol. 20, 150-153. [CrossRef] [Google Scholar]
  • Kotake A., Arai T., Ozawa T., Nojima S., Miller M.J., Tsukamoto K., 2003, Variation in migratory history of Japanese eels, Anguilla japonica, collected in coastal waters of the Amakusa Islands, Japan, inferred from otolith Sr/Ca ratios. Mar. Biol. 142, 849-854. [Google Scholar]
  • Kraus R.T., Secor D.H., 2004, Incorporation of strontium into otoliths of an estuarine fish. J. Exp. Mar. Biol. Ecol. 302, 85-106. [CrossRef] [Google Scholar]
  • Li Y.-H., Chan L.-H., 1979, Desorption of Ba and 226Ra from river-borne sediments in the Hudson estuary. Earth Planet. Sci. Lett. 43, 343-350. [Google Scholar]
  • Limburg K.E., 1995, Otolith strontium traces environmental history of subyearling American shad Alosa sapidissima. Mar. Ecol. Prog. Ser. 119, 25-35. [CrossRef] [Google Scholar]
  • Limburg K.E., 1998, Anomalous migrations of anadromous herrings revealed with natural chemical tracers. Can. J. Fish. Aquat. Sci. 55, 431-437. [CrossRef] [Google Scholar]
  • Martin G.B., Thorrold S.R., Jones C.M., 2004, Temperature and salinity effects on strontium incorporation in otoliths of larval spot (Leiostomus xanthurus). Can. J. Fish. Aquat. Sci. 61, 34-42. [CrossRef] [Google Scholar]
  • McCulloch M., Fallon S., Wyndham T., Hendy E., Lough J., Barnes D., 2003, Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421, 727-730. [CrossRef] [PubMed] [Google Scholar]
  • McDowall R.M., 1988, Diadromy in fishes. Migrations between freshwater and marine environments. Timber Press, Portland, Oregon. [Google Scholar]
  • Milton D.A., Chenery S.P., 2001, Sources and uptake of trace metals in otoliths of juvenile barramundi (Lates calcarifer). J. Exp. Mar. Biol. Ecol. 264, 47-65. [CrossRef] [Google Scholar]
  • Milton D.A., Chenery S.R., 2003, Movement patterns of the tropical shad hilsa (Tenualosa ilisha) inferred from transects of 87Sr/86Sr isotope ratios in their otoliths. Can. J. Fish. Aquat. Sci. 60, 1376-1385. [CrossRef] [Google Scholar]
  • Milton D.A., Tenakanai C.D., Chenery S.R., 2000, Can the movements of barramundi in the Fly river region, Papua New Guinea be traced in their otoliths? Estuar. Coast. Shelf Sci. 50, 855-868. [Google Scholar]
  • Morris J.A., Rulifson R.A., Toburen L.H., 2003, Life history strategies of striped bass, Morone saxatilis, populations inferred from otolith microchemistry. Fish. Res. 62, 53-63. [CrossRef] [Google Scholar]
  • Munro A.R., McMahon T.E., Ruzycki J.R., 2005, Natural chemical markers identify source and date of introduction of an exotic species: Lake trout (Salvelinus namaycush) in Yellowstone Lake. Can. J. Fish. Aquat. Sci. 62, 79-87. [CrossRef] [Google Scholar]
  • Nelson C.S., Northcote T.G., Hendy C.H., 1989, Potential use of oxygen and carbon isotopic composition of otoliths to identify migratory and non-migratory stocks of the New Zealand common smelt: A pilot study. N.Z. J. Mar. Freshw. Res. 23, 337-344. [CrossRef] [Google Scholar]
  • Northcote T.G., 1997, Potamodromy in Salmonidae - living and moving in the fast lane. N. Am. J. Fish. Manage. 17, 1029-1045. [CrossRef] [Google Scholar]
  • Northcote T.G., Hendy C.H., Nelson C.S., Boubee J.A.T., 1992, Tests for migratory history of the New Zealand common smelt (Retropinna retropinna (Richardson)) using otolith isotopic composition. Ecol. Freshw. Fish 1, 61-72. [CrossRef] [Google Scholar]
  • Otake T., Ishii T., Nakahara M., Nakamura R., 1994, Drastic changes in otolith strontium/calcium ratios in leptocephali and glass eels of Japanese eel Anguilla japonica. Mar. Ecol. Prog. Ser. 112, 189-193. [CrossRef] [Google Scholar]
  • Palmer M.R., Edmond J.M., 1992, Controls over the strontium isotope composition of river water. Geochim. Cosmochim. Acta 56, 2099-2111. [CrossRef] [Google Scholar]
  • Pender P.J., Griffin R.K., 1996, Habitat history of barramundi Lates calcarifer in a North Australian river system based on barium and strontium levels in scales. Trans. Am. Fish. Soc. 125, 679-689. [CrossRef] [Google Scholar]
  • Peterson B.J., Fry B., 1987, Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Syst. 18, 293-320. [Google Scholar]
  • Pittman S.J., McAlpine C.A., 2003, Movements of marine fish and decapod crustaceans: Process, theory and application. Adv. Mar. Biol. 44, 205-294. [CrossRef] [PubMed] [Google Scholar]
  • Radtke R.L., Kinzie R.A., 1996, Evidence of a marine larval stage in endemic Hawaiian stream gobies from isolated high-elevation locations. Trans. Am. Fish. Soc. 125, 613-621. [CrossRef] [Google Scholar]
  • Radtke R.L., Kinzie R.A., Folsom S.D., 1988, Age at recruitment of Hawaiian freshwater gobies. Environ. Biol. Fish. 23, 205-213. [Google Scholar]
  • Reynolds L.F., 1983, Migration patterns of five fish species in the Murray-Darling river system. Aust. J. Mar. Freshw. Res. 34, 857-871. [CrossRef] [Google Scholar]
  • Rieman B.E., Myers D.L., Nielson R.L., 1994, Use of otolith microchemistry to discriminate Oncorhynchus nerka of resident and anadromous origin. Can. J. Fish. Aquat. Sci. 51, 68-77. [CrossRef] [Google Scholar]
  • Rohling E.J., Bigg G.R., 1998, Paleosalinity and delta-O-18 - a critical assessment. J. Geophys. Res. 103, 1307-1318. [CrossRef] [Google Scholar]
  • Rooker J.R., Kraus R.T., Secor D.H., 2004, Dispersive behaviors of black drum and red drum: Is otolith Sr:Ca a reliable indicator of salinity history? Estuaries 27, 334-341. [CrossRef] [Google Scholar]
  • Secor D.H., 1992, Application of otolith microchemistry analysis to investigate anadromy in Chesapeake Bay striped bass Morone saxatilis. Fish. Bull. 90, 798-806. [Google Scholar]
  • Secor D.H., Henderson-Arzapalo A., Piccoli P.M., 1995, Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes? J. Exp. Mar. Biol. Ecol. 192, 15-33. [CrossRef] [Google Scholar]
  • Secor D.H., Piccoli P.M., 1996, Age- and sex-dependent migrations of striped bass in the Hudson River as determined by chemical microanalysis of otoliths. Estuaries 19, 778-793. [CrossRef] [Google Scholar]
  • Secor D.H., Rooker J.R., 2000, Is otolith strontium a useful scalar of life cycles in estuarine fishes? Fish. Res. 46, 359-371. [Google Scholar]
  • Shiao J.C., Iizuka Y., Chang C.W., Tzeng W.N., 2003, Disparities in habitat use and migratory behavior between tropical eel Anguilla marmorata and temperate eel A. japonica in four Taiwanese rivers. Mar. Ecol. Prog. Ser. 261, 233-242. [CrossRef] [Google Scholar]
  • Thorrold S.R., Jones C.M., Campana S.E., McLaren J.W., Lam J.W.H., 1998, Trace element signatures in otoliths record natal river of juvenile American shad (Alosa sapidissima). Limnol. Oceanogr. 43, 1826-1835. [Google Scholar]
  • Thorrold S.R., Latkoczy C., Swart P.K., Jones C.M., 2001, Natal homing in a marine fish metapopulation. Science 291, 297-299. [CrossRef] [PubMed] [Google Scholar]
  • Tsukamoto K., Arai T., 2001, Facultative catadromy of the eel Anguilla japonica between freshwater and seawater habitats. Mar. Ecol. Prog. Ser. 220, 265-276. [CrossRef] [Google Scholar]
  • Tsukamoto K., Nakai I., Tesch W.-V., 1998, Do all freshwater eels migrate? Nature 396, 635-636. [CrossRef] [Google Scholar]
  • Turner D.R., Whitfield M., Dickson A.G., 1981, The equilibrium speciation of dissolved components in freshwater and seawater at 25 Formula C and 1 atm pressure. Geochim. Cosmochim. Acta 45, 855-881. [CrossRef] [Google Scholar]
  • Tzeng W.-N., 1996, Effects of salinity and ontogenetic movements on strontium:calcium ratios in the otoliths of the Japanese eel, Anguilla japonica Temminck and Schlegel. J. Exp. Mar. Biol. Ecol. 199, 111-122. [CrossRef] [Google Scholar]
  • Tzeng W.N., Iizuka Y., Shiao J.C., Yamada Y., Oka H.P., 2003, Identification and growth rates comparison of divergent migratory contingents of Japanese eel (Anguilla japonica). Aquaculture 216, 77-86. [CrossRef] [Google Scholar]
  • Tzeng W.N., Severin K.P., Wickstrom H., 1997, Use of otolith microchemistry to investigate the environmental history of European eel Anguilla anguilla. Mar. Ecol. Prog. Ser. 149, 73-81. [CrossRef] [Google Scholar]
  • Tzeng W.N., Shiao J.C., Iizuka Y., 2002, Use of otolith Sr:Ca ratios to study the riverine migratory behaviors of Japanese eel Anguilla japonica. Mar. Ecol. Prog. Ser. 245, 213-221. [CrossRef] [Google Scholar]
  • Volk E.C., Blakley A., Schroder S.L., Kuehner S.M., 2000, Otolith chemistry reflects migratory characteristics of Pacific salmonids: Using otolith core chemistry to distinguish maternal associations with sea and freshwaters. Fish. Res. 46, 251-266. [CrossRef] [Google Scholar]
  • Waight T., Backer J., Peate D., 2002, Sr isotope ratio measurements by double-focusing MC-ICPMS: techniques, observations and pitfalls. Int. J. Mass Spectrom. 221, 229-244. [CrossRef] [Google Scholar]
  • Weber P.K., Hutcheon I.D., McKeegan K.D., Ingram B.L., 2002, Otolith sulfur isotope method to reconstruct salmon (Oncorhynchus tshawytscha) life history. Can. J. Fish. Aquat. Sci. 59, 587-591. [CrossRef] [Google Scholar]
  • Wells B.K., Bath G.E., Thorrold S.R., Jones C.M., 2000, Incorporation of strontium, cadmium, and barium in juvenile spot (Leiostomus xanthurus) scales reflects water chemistry. Can. J. Fish. Aquat. Sci. 57, 2122-2129. [CrossRef] [Google Scholar]
  • Wells B.K., Rieman B.E., Clayton J.L., Horan D.L., Jones C.M., 2003, Relationships between water, otolith, and scale chemistries of westslope cutthroat trout from the Coeur d'Alene River, Idaho: The potential application of hard-part chemistry to describe movements in freshwater. Trans. Am. Fish. Soc. 132, 409-424. [CrossRef] [Google Scholar]
  • Woodhead J., Swearer S., Hergta J., Maasa R., 2005, In situ Sr-isotope analysis of carbonates by LA-MC-ICP-MS: Interference corrections, high spatial resolution and an example from otolith studies. J. Analyt. Atomic Spectrometr. 20, 22-27. [CrossRef] [Google Scholar]
  • Zlokovitz E.R., Secor D.H., Piccoli P.M., 2003, Patterns of migration in Hudson River striped bass as determined by otolith microchemistry. Fish. Res. 63, 245-259. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.