Issue |
Aquat. Living Resour.
Volume 32, 2019
Physiomar 17
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/alr/2019001 | |
Published online | 12 February 2019 |
Research Article
Investigation of the molecular signatures of selection on ATP synthase genes in the marine bivalve Limecola balthica
Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS – Université de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
* Corresponding author: epante@univ-lr.fr
Handling Editor: Doris Abele
Received:
10
January
2018
Accepted:
7
January
2019
We used transcriptomic sequence data to describe patterns of divergence and selection across different populations of a marine bivalve (Limecola balthica). Our analyses focused on a nuclear gene (atp5c1) that was previously detected in an FST scan as highly structured among populations separated by the Finistère Peninsula in France. This gene encodes the gamma subunit of the FO/F1 ATP synthase, a multi-protein complex that is paramount to cellular respiration and energy production. Analysis of non-synonymous to synonymous mutation ratios revealed that 65% of the gene is highly conserved (dN/dS ≤ 0.1, min = 0), while 6% of the gene is likely under positive selection (dN/dS ≥ 1, max = 2.03). All replacement mutations are clustered on a 46 residues portion of the protein, within an inter-peptide interaction zone. Comparative genomics suggests that these mutations are evolutionarily stable, and we hypothesize that they are involved in inter-population genetic incompatibilities with other subunits of the ATP synthase complex. The protein stability of the gamma subunit conferred by southern variants was inferred to be higher under warmer temperatures, suggesting that environmental conditions may contribute to the strength of genetic barriers in L. balthica.
Key words: Molecular evolution / local adaptation / genetic incompatibilities / selection / ATP synthase / Macoma balthica
© EDP Sciences 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.