Free Access
Aquat. Living Resour.
Volume 23, Number 3, July-September 2010
Page(s) 239 - 245
Published online 30 September 2010
  • Barbin V., Ramseyer K., Elfman M., 2008, Biological record of added manganese in seawater: a new efficient tool to mark in vivo growth lines in the oyster species Crassostrea gigas. Int. J. Earth Sci. 97, 193–199. [CrossRef] [Google Scholar]
  • Bashey F., 2004, A comparison of the suitability of alizarin red S and calcein for inducing a non-lethally detectable mark in juvenile guppies. Trans. Am. Fish. Soc. 133, 1516–1523. [CrossRef] [Google Scholar]
  • Clark I.G.R., 1974, Growth lines in Invertebrates skeletons Ann. Rev. Earth Th. Pl. Sci. 2, 77–99. [CrossRef] [Google Scholar]
  • Clarke A., Prothero-Thomas E., Beaumont J.C., Chapman A.L., Brey T., 2004, Growth in the limpet Nacella concinna from contrasting sites in Antarctica. Polar Biol. 28, 62–71. [Google Scholar]
  • Cole H.A., 1956, A preliminary study of growth-rate in cockles (Cardium edule L.) in relation to commercial exploitation. J. Cons. Int. Explor. Mer 22, 77–90. [Google Scholar]
  • Day R.W., Williams M.C., Hawkes G.P., 1995, A comparison of fluorochromes for marking abalone shells. Mar. Freshw. Res. 46, 599–605. [CrossRef] [Google Scholar]
  • Ellers O., Johnson A.S., 2009, Polyfluorochrome marking slows growth only during the marking month in the green sea urchin Strongylocentrotus droebachiensis. Invertebr. Biol. 128, 126–144. [CrossRef] [Google Scholar]
  • Evans J.W., 1972, Tidal growth increments in the cockle Clinocardium nuttalli. Science 176, 416–417. [CrossRef] [PubMed] [Google Scholar]
  • Fahy E., Carroll J., Murran S., 2005, The Dundalk cockle Cerastoderma edule fishery in 2003-2004. Irish Fish. Invest. 14, 16. [Google Scholar]
  • Fujikura K., Okoshi K., Naganuma T., 2003, Strontium as a marker for estimation of microscopic growth rates in a bivalve. Mar. Ecol. Prog. Ser. 257, 295–301. [CrossRef] [Google Scholar]
  • Goodwin D.H., Flessa K.W., Schöne B.R., Dettman D.L., 2001, Cross-calibration of daily growth increments, stable isotope variation, and temperature in the Gulf of California Bivalve Mollusk Chione cortezi: Implications for paleoenvironmental analysis. Palaios 16, 387–398. [Google Scholar]
  • Hawkes G.P., Day R.W., Wallace M.W., Nugent K.W., Bettiol A.A., Jamieson D.N., Williams M.C., 1996, Analyzing the growth and form of mollusc shell layers, in situ, by cathodoluminescence microscopy and Raman spectroscopy. J. Shellfish Res. 15, 659–666. [Google Scholar]
  • Hermann M., 2008, Population dynamics of the Argentinean surf clams Donax hanleyanus and Mesodesma mactroides from open-Atlantic beaches off Argentina. Ph.D thesis, Univ. Bremen, Germany. [Google Scholar]
  • House M.R., Farrow G.E., 1968, Daily growth banding in the shell of the cockle, Cardium edule. Nature 219, 1384–1386. [CrossRef] [PubMed] [Google Scholar]
  • Kaehler S., McQuaid C.D., 1999, Use of the fluorochrome calcein as an in situ marker in the brown mussel Perna perna. Mar. Biol. 133, 455–460. [CrossRef] [Google Scholar]
  • Kilada R., Campana S., Roddick D., 2009, Growth and sexual maturity of the northern propellercalm, Cyrtodaria siliqua, in Eastern Canada with bomb radiocarbon age validation. Mar. Biol. 156, 1029–1037. [CrossRef] [Google Scholar]
  • Langlet D., Alunno-Bruscia M., De Rafelis M., Renard M., Roux M., Schein E., Buestel D., 2006, Experimental and natural cathodoluminescence in the shell of Crassostrea gigas from Thau lagoon (France): ecological and environmental implications. Mar. Ecol. Prog. Ser. 317, 143–156. [CrossRef] [Google Scholar]
  • Lartaud F., De Rafelis M., Ropert M., Emmanuel L., Geairon P., Renard M., 2010, Mn labelling of living oysters: artificial and natural cathodoluminescence analysis as a tool for age and growth rate determination of C. gigas (Thunberg, 1793) shells. Aquaculture 300, 206–217. [CrossRef] [Google Scholar]
  • Lönne O.J., Gray J.S., 1988, Influence of tides on microgrowth bands in Cerastoderma edule from Norway. Mar. Ecol. Prog. Ser. 42, 1–7. [CrossRef] [Google Scholar]
  • Lucas T., Palmer P.J., Wang S., Scoones R., 2008, Marking the shell of the saucer scallop Amusium balloti for sea ranching using oxytetracycline, calcein and alizarin red S. J. Shellfish Res. 27, 1183–1188. [CrossRef] [Google Scholar]
  • McKinnon J.F., 1996, Studies of the age, growth and shell increment patterns in the New Zealand cockle (Austrovenus stutchburyi). Ph.D. thesis, Univ. Otago, New Zealand. [Google Scholar]
  • Monaghan J.P., 1993, Comparison of calcein and tetracycline as chemical markers in summer flounder. Trans. Am. Fish. Soc. 122, 298–301. [CrossRef] [Google Scholar]
  • Moran A.L., 2000, Calcein as a marker in experimental studies newly-hatched gastropods. Mar. Biol. 137, 893–898. [CrossRef] [Google Scholar]
  • Moran A.L., Marko P.B., 2005, A simple technique for physical marking of larvae of marine bivalves. J. Shellfish Res. 24, 567–571. [Google Scholar]
  • Nakahara H., 1961, Determination of growth rates of nacreous layer by the administration of tetracycline. Bull. Nat. Pearl Res. Lab. 6, 607–614. [Google Scholar]
  • Pineiro C., Rey J., De Pontual H., Goni R., 2007, Tag and recapture of European hake (Merluccius merluccius L.) off the Northwest Iberian Peninsula: First results support fast growth hypothesis. Fish. Res. 88, 150–154. [CrossRef] [Google Scholar]
  • Pirker J.G., Schiel D.R., 1993, Tetracycline as a fluorescent shell marker in the abalone Haliotis iris. Mar. Biol. 116, 81–86. [CrossRef] [Google Scholar]
  • Riascos J., Guzma N., Laudien J., Heilmayer O., Oliva M., 2007, Suitability of three stains to mark shells of Concholepas concholepas (Gastropoda) and Mesodesma donacium (Bivalvia). J. Shellfish Res. 20, 43–49. [CrossRef] [Google Scholar]
  • Richardson C.A., Crisp D.J., Runham N.W., 1979, Tidally deposited growth bands in the shell of the common cockle, Cerastoderma edule (L.). Malacologia 18, 277–290. [Google Scholar]
  • Richardson C.A., Crisp D.J., Runham N.W., 1980, An endogenous rhythm in shell deposition in Cerastoderma edule. J. Mar. Biol. Assoc. UK 60, 991–1004. [CrossRef] [Google Scholar]
  • Richardson C.A., Crisp D.J., Runham N.W., 1981, Factors influencing shell deposition during a tidal cycle in the intertidal bivalve Cerastoderma edule. J. Mar. Biol. Assoc. UK 61, 465–476. [CrossRef] [Google Scholar]
  • Rowley R.J., Mackinnon D.I., 1995, Use of the fluorescent marker calcein in biomineralisation studies of brachiopods and other marine organisms. Bull. Inst. Oceanogr. Fish. 14, 111–120. [Google Scholar]
  • Schmitt P.D., 1984, Marking growth increments in otoliths of larval and juvenile fish by immersion in tetracycline to examine the rate of increment formation. Fish. Bull. 82, 237–242. [Google Scholar]
  • Schöne B.R., Tanabe K., Dettman D.L., Sato S., 2003, Environmental controls on shell growth rates and δ18O of the shallow-marine bivalve mollusk Phacosoma japonicum in Japan. Mar. Biol. 142, 473–485. [Google Scholar]
  • Schöne B.R., 2008, The curse of physiology-challenges and opportunities in the interpretation of geochemical data from mollusk shells., Geo Mar. Lett. 28, 269–285. [Google Scholar]
  • Thebault J., Chauvaud L., Clavier J., Fichez R., Morize E., 2006, Evidence of a 2-day periodicity of striae formation in the tropical scallop Comptopallium radula using calcein marking. Mar. Biol. 149, 257–267. [CrossRef] [Google Scholar]
  • Wanamaker A.D., Baker A., Butler P., Richardson C.A., Scourse J.D., Ridgway I., Reynolds D.J., 2009, A novel method for imaging internal growth patterns in marine molluscs: a fluorescence case study on the aragonitic shell of the marine bivalve Arctica islandica (Linnaeus). Limnol. Oceanogr. Methods 7, 673–681. [Google Scholar]
  • Wilbur K. M., Owen G., 1964, Growth. In: Wilbur K.M., Yonge C.M. (Eds). Physiology of the Mollusca. Academic Press, New York, pp. 211–242. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.