Open Access
Issue
Aquat. Living Resour.
Volume 38, 2025
Article Number 6
Number of page(s) 12
DOI https://doi.org/10.1051/alr/2025003
Published online 02 April 2025
  • Abwao JO, Boera PN, Munguti JM, Orina PS, Ogello EO. 2013. The potential of periphyton based aquaculture for nile tilapia (Oreochromis niloticus L.) production: a review. Survival 96: 91. [Google Scholar]
  • Altieri MA, Nicholls CI, Montalba R. 2017. Technological approaches to sustainable agriculture at a crossroads: an agroecological perspective. Sustainability 9: 349. [CrossRef] [Google Scholar]
  • Anix A, Santhiya V, Athithan S, Ahilan B. 2020. Comparison of periphyton biomass on coconut coir and bamboo poles as natural substrates in earthen lined pond. IJBSM 11: 494–500. [Google Scholar]
  • Anix Vivek Santhiya A, Athithan S, Ahilan B, Stephen Sampath Kumar J, Srinivasan A. 2017. Evaluation of periphyton quantity on different natural substrates in Earthen lined pond. J Appl Nat Sci 9: 1630–1636. [Google Scholar]
  • APHA. 2017. Standard Methods of Water Analysis, 23rd edition. APHA [Google Scholar]
  • Apollos TG, Raji A, Modibbo U. 2016. Seasonal variation of water quality parameters of Zobe reservoir Dutsinma Katsina State, Nigeria. Hydrol Curr Res 7: 261. [Google Scholar]
  • Arthur JR, Lavilla-Pitogo CR, Subasinghe RP. 2000. Use of chemicals in aquaculture in Asia, Southeast Asian Fisheries Development Center Aquaculture Department Tigbauan, Iloilo, Philippines, pp 144. [Google Scholar]
  • Azim ME. 2009. Photosynthetic Periphyton and Surfaces. Encyclopedia of Inland waters, 184–191. [Google Scholar]
  • Azim ME, Wahab MA, van Dam AA, Beveridge MCM, Huisman EA, Verdegem MCJ. 2001. Optimization of stocking ratios of two Indian major carps, rohu (Labeo rohita Ham.) and catla (Catla catla Ham.) in a periphyton-based aquaculture system. Aquaculture 203: 33–49. [Google Scholar]
  • Azim ME, Wahab MA, Verdegem MCJ, van Dam AA, van Rooij JM, Malcolm ME, Beveridge CM. 2002. The effects of artificial substrates on freshwater pond productivity and water quality and the implications for periphyton-based aquaculture. Aquat. Living Resour 15: 231–241. [Google Scholar]
  • Baluyut AE. 1989. Aquaculture systems and practices: A selected review, united nations development programme Food and Agriculture Organization of the United Nations, Rome 4: 3–5. https://www.fao.org/3/t8598e/t8598e00.htm#Contents [Google Scholar]
  • Baluni P, Kumar K, Joshi HK. 2018. Ecology, Distribution pattern, density and diversity of periphyton in khankra spring fed stream of Garhwal Himalaya. India. J Mountain Res 12: 73–9. [Google Scholar]
  • Banerjea SM. 1967. Water quality and soil condition of fishponds in some states of India in relation to fish production. Indian J Fish 14: 115–144. [Google Scholar]
  • Beveridge MCM, Phillips MJ. 1993. Environmental impact of tropical inland aquaculture. In Environment and Aquaculture in Developing Countries (eds. R.S.V. Pullin, H. Rosenthal and J.L. Maclean). ICLARM Conf. Proc. 31. ICLARM, Manila. pp. 213–236. [Google Scholar]
  • Beveridge MCM, Wahab MA, Dewan S. 1994. Effects of daily harrowing on pond soil and water nutrient levels and on rohu fingerling production. Prog Fish Cult 56: 282–287. [Google Scholar]
  • Bhatnagar A, Singh G. 2010. Culture fisheries in village ponds: a multi-location study in Haryana, India. ABJNA 1: 961–968. [Google Scholar]
  • Bhujel RC. 2012. Small-scale aquaculture: global and national perspectives. In: Shrestha, M.K., Pant, J. (Eds.), Small-scale aquaculture for rural livelihoods: proceedings of the symposium on small-scale aquaculture for increasing resilience of rural livelihoods in Nepal. 5–6 Feb 2009. Kathmandu, Nepal. World Fish. [Google Scholar]
  • Boyd CE. 1992. Water Quality Management for Pond Fish Culture. Elsevier Science Publishers B.V., 1000 AH Amsterdam, The Netherlands. 316 pp. [Google Scholar]
  • Boyd CE, Lichtkoppler F. 1979. Water Quality Management in Fish Ponds. Research and Development Series No. 22, International Centre for Aquaculture (J.C.A.A) Experimental Station Auburn University, Alabama, 45–47. [Google Scholar]
  • Das M, Behera PR, Dash B. 2017. Periphyton communities in carp culture ponds treated with cow manure and biogas slurry. Aquat Living Resour 30: 25. [Google Scholar]
  • Das S, Der P, Raychaudhuri U, Maulik N, Das DK. 2006. The effect of Euryale ferox (Makhana), an herb of aquatic origin, on myocardial ischemic reperfusion injury. Mol Cell Biochem 289: 55–63. [PubMed] [Google Scholar]
  • David LH, Pinho SM, Romera DM, Campos DW, Franchini AC, Garcia F. 2022. Tilapia farming based on periphyton as a natural food source. Aquaculture 547: 737544. [Google Scholar]
  • Directorate of Horticulture. 2022. Bihar Makhana at a glance (Euryale ferox Salisb.) Bihar Horticulture development Society, Department of Agriculture, Bihar-01. [Google Scholar]
  • Dutta R, Dutta A, Bhagobaty N, Bhagabati SK. 2018. Periphyton community structure of Namsang stream, Arunachal Pradesh. J Coldwater Fish 1: 113–120. [Google Scholar]
  • Faruk-ul-Islam ATM. 1996. The use of bamboo substrates to promote periphyton growth as feed for Nile tilapia Oreochromis niloticus in small ponds. M. Sc thesis, BAU, Mymensingh, Bangladesh. 74 pp. [Google Scholar]
  • Hem S, Avit JLB. 1994. The results of “Acadja-Enclos” as an extensive aquaculture system (West Africa). Bull Mar Sci 55: 1038–1049. [Google Scholar]
  • Horne AJ, Goldman CR. 1994. Limnology (2nd ed.). McGraw-Hill. Chapter 4: Temperature. [Google Scholar]
  • Isbell F, Adler PR, Eisenhauer N, Fornara D, Kimmel K, Kremen C, Letourneau DK, Liebman M, Polley HW, Quijas S, Scherer‐Lorenzen M. 2017. Benefits of increasing plant diversity in sustainable agroecosystems. J Ecol 105: 871–879. [Google Scholar]
  • James MR, Hawes I, Weatherhead M. 2000. Removal of settled sediments and periphyton from macrophytes by grazing invertebrates in the littoral zone of a large oligotrophic lake. Freshw Biol 44: 311–326. [Google Scholar]
  • Jha V, Barat GK. 2003. Nutritional and Medicinal properties of Euryle ferox Salisbury, In: Makhana, edited by Mishra RK, Jha V and Dehadrai PV (ICAR, New Delhi), 230–238. [Google Scholar]
  • Kapoor S, Kaur A, Kaur R, Kumar V, Choudhary M. 2022. Euryale ferox, a prominent superfood: Nutritional, pharmaceutical, and its economical importance. J Food Biochem 46: e14435. [Google Scholar]
  • Kaviyarasan K, Athithan S. 2019. Evaluation of periphyton quantity on different natural substrates in freshwater. ASD 39: 250–3. [Google Scholar]
  • Keshavanath P. 2014. Role of natural food in sustaining aquaculture. J Aquat Biol Fish 2: 6–13. [Google Scholar]
  • Kramer DL. 1987. Dissolved oxygen and fish behavior. Environ biol fishes 18: 81–92. [Google Scholar]
  • Kumar M, Raut SM, Bhatt BP, Kumar L. 2020. Scientific cultivation of Makhana for improving farmers’ livelihood in eastern India. BRT 2: 670–672. [Google Scholar]
  • Kumar L, Gupta VK, Jha BK, Singh IS, Singh AK. 2011. Status of Makhana (Euryale ferox Salisb.). Technical Bulletin No. R-32/PAT-21, ICAR-RCER Patna-14. [Google Scholar]
  • Kumari A, Jha V. 2016. Ethnic uses of Makhana (Euryale ferox Salisb.) in Mithila (north Bihar) and other parts of India. JTFP 4: 60–67. [Google Scholar]
  • LeGresley M, McDermott G. 2010. Counting chamber methods for quantitative phytoplankton analysis-haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. UNESCO(IOC manuals and guides), pp. 25–30. [Google Scholar]
  • Letourneau DK, Armbrecht I, Rivera BS, Lerma JM, Carmona EJ, Daza MC, Escobar S, Galindo V, Gutiérrez C, López SD, Mejía JL. 2011. Does plant diversity benefit agroecosystems? A synthetic review. Ecol Appl 21: 9–21. [Google Scholar]
  • Levy A, Milstein A, Neori A, Harpaz S, Shpigel M, Guttman L. 2017. Marine periphyton biofilters in mariculture effluents: nutrient uptake and biomass development. Aquaculture 473: 513–520. [Google Scholar]
  • Liaquat M, Pasha I, Ahsin M, Salik A. 2022. Roasted fox nuts (Euryale Ferox L.) contain higher concentration of phenolics, flavonoids, minerals and antioxidants, and exhibit lower Glycemic Index (GI) in human subjects. FPPN 4: 1–2. [Google Scholar]
  • Likens GE. 1985. The aquatic ecosystem and air-land-water interactions. An Ecosystem Approach to Aquatic Ecology (pp. 430–435). Springer, New York. [Google Scholar]
  • Mandal RN, Saha GS, Sarangi N. 2010. Harvest and processing of Makhana (Euryale ferox Salisb.)-a unique assemblage of traditional knowledge. IJTK 9: 674–688. [Google Scholar]
  • Milstein A, Azim ME, Abdul Wahab M, Verdegem MCJ. 2003. The effects of periphyton, fish and fertilizer dose on biological processes affecting water quality in earthen fish ponds. Environ Biol Fishes 68: 247–260. [Google Scholar]
  • Mishra RK, Vidyanath J, Dehadrai PV. 2003. Makhana. Indian Council of Agricultural Research, New Delhi. [Google Scholar]
  • Nahiduzzaman M, Karim E, Nisheeth NN, Bhadra A, Mahmud Y. 2023. Temporal distribution of plankton and fish species at Mithamoin Haor: Abundance, composition, biomass and ecosystem based management approach. Heliyon 9: e22770. [Google Scholar]
  • Nath BK, Chakraborty AK. 1985. Studies on the Physico‐chemical Properties of the Starch of Euryale ferox Salisbury. J Food Sci Technol 22: 293. [Google Scholar]
  • Negri M, Romera DM, Garcia F. 2023. Integrated multitrophic aquaculture in ponds using substrate for periphyton as natural source of food. Boletim do Instituto de Pesca 49: 12. [Google Scholar]
  • Nicholls C, Altieri MA, Vazquez L. 2016. Agroecology: principles for the conversion and redesign of farming systems. J Ecosyst Ecogr S5: 010. [Google Scholar]
  • Olah J, Szabo P, Esteky AA, Nezami SA. 1994. Nitrogen processing and retention in Hungarian carp farms. J. Appl Ichthyol 10: 215–390. [Google Scholar]
  • Paul BN, Adhikari S, Mandal RN. 2017. Training Manual on Application and Practices of Fish Feed in Aquaculture, ICAR-Central Institute of Freshwater Aquaculture, RRC, Rahara, Kolkata, West Bengal, India, pp: 1–130. [Google Scholar]
  • Raut S, Gupta N, Everard M, Singh IS. 2020. Commercially and medicinally significant aquatic macrophytes: potential for improving livelihood security of indigenous communities in northern Bihar, India. J Threat Taxa 12: 16819–16830. [Google Scholar]
  • Raut S, Kumar P, Singh J, Singh I, Ahirwal S, Nair S, Raman R, Jana B, Kumar M, Tarate S, Kumar, R. 2024. Enhancing productivity of the wetland ecosystem in North Bihar, India. Indian Farming Digest 3: 1–5. [Google Scholar]
  • Randall DJ. 2011. Nitrogenous-waste balance, Excretion of Ammonia Encyclopedia of Fish Physiology, 1437–1443. [Google Scholar]
  • Roberts PV. 1984. Dependence of oxygen transfer rate on energy dissipation during surface aeration and in stream flow. Gas transfer at water surfaces (pp. 347–355). Dordrecht: Springer Netherlands. [CrossRef] [Google Scholar]
  • Saikia SK, Majumder S, Nandi S, Saha SK. 2013. Feeding ecology of the freshwater fish rohu Labeo rohita (Hamilton 1822): a case of intelligent feeding in the periphyton-based environment. Zool Ecol 23: 266–274. [Google Scholar]
  • Saraswathy R, Muralidhar M, Sundaray JK, Lalitha N, Kumararaja P. 2015. Water quality management in fish hatchery and grow-out systems. Adv Mar Brackishwater Aquacul 217–225. [Google Scholar]
  • Singh IS, Kumar M, Raut SM, Thakur AK, Singh SP. 2020. Integrated nutrient management package for field cultivation of makhana in North Bihar: INM for makhana cultivation. J AgriSearch 7: 138–141. [Google Scholar]
  • Singh IS, Thakur AK, Singh DK, Kumar PV, Raut SM. 2023. Assessment of nutrient accumulation capability of two economically important aquatic plants. Pharma Innov J 12: 2498–2504. [Google Scholar]
  • Stone NM, Thomforde HK. 2004. Understanding your fish pond water analysis report (pp. 1–4). Cooperative Extension Program, University of Arkansas at Pine Bluff, US Department of Agriculture and county governments cooperating. [Google Scholar]
  • Sukumaran K, Thirunavukkarasu AR, Kailasam M, Sundaray JK, Biswas G, Kumar P, Subhuraj R, Thiagrajan G, Venu S. 2017. Evaluation of Bamboo, Coconut Shell Substrates and Supplemental Feeding on the Growth of Pearlspot, Etroplus suratensis (Bloch) Fry in Low Volume Cages. Fishery Technology 54: 1–7. [Google Scholar]
  • USEPA/United States Environmental Protection Agency, CADDIS: 2. https://www.epa.gov/caddis-vol2/ph [Google Scholar]
  • Zheng J, Wang H, Liu B. 2022. Impact of the long-term precipitation and land use changes on runoff variations in a humid subtropical river basin of China. J Hydrol Reg Stud 42: 101136. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.