Open Access
Issue
Aquat. Living Resour.
Volume 36, 2023
Article Number 15
Number of page(s) 14
DOI https://doi.org/10.1051/alr/2023008
Published online 16 May 2023
  • Balguerías E, Hernández-González C, Perales-Raya C. 2002. On the identity of Octopus vulgaris Cuvier, 1797 stocks in the Saharan Bank (Northwest Africa) and their spatio-temporal variations in abundance in relation to some environmental factors. Bull Mar Sci 71: 147–163. [Google Scholar]
  • Bez N, Renard D, Ahmed-Babou D. 2022. Empirical Orthogonal Maps (EOM) and distance between empirical spatial distributions. Application to Mauritanian octopus distribution over the period 1987–2017. Math Geosci 55: 113–128. [Google Scholar]
  • Boyle PR, Boletzky SV. 1996. Cephalopod populations: Definition and dynamics. Philos Trans Royal Soc Lond Ser B 351: 985–1002. [CrossRef] [Google Scholar]
  • Caddy JF. 1983. The cephalopods: Factors relevant to their population dynamics and to the assessment and management of stocks. Adv Assess World Cephalopod Resour 231: 416–449. [Google Scholar]
  • Caverivière A, Domain F, Diallo A. 1999. Observations on the influence of temperature on the length of embryonic development in Octopus vulgaris (Senegal). Aquat Liv Resour 12: 151–154. [CrossRef] [Google Scholar]
  • Chilés JP, Delfiner P. 2009. Geostatistics: Modeling Spatial Uncertainty. John Wiley & Sons. [Google Scholar]
  • Domain F, Jouffre D, Caverivière A. 2000. Growth of Octopus vulgaris from tagging in Senegalese waters. J Mar Biol Assoc UK 80: 699–705. [CrossRef] [Google Scholar]
  • Demarcq H, Faure V. 2000. Coastal upwelling and associated retention indices derived from satellite SST. Application to Octopus vulgaris recruitment. Oceanolog Acta 23: 391–408. [CrossRef] [Google Scholar]
  • Dobrovine B, Ould Mohamed Mahfoud M, Ould Sidina D. 1991. La ZEE mauritanienne et son environnement géographique géomorphologique et hydroclimatique. Bull Sci CNROP 24. https://aquadocs.org/handle/1834/518. [Google Scholar]
  • Faure V, Inejih C, Demarcq H, Cury P. 2008. The importance of retention processes in upwelling areas for recruitment of Octopus vulgaris: The example of the Arguin Bank (Mauritania). Fish Oceanogr 9: 343–355. [Google Scholar]
  • Gascuel D, Labrosse P, Meissa B, Taleb Sidi MO, Guénette S. 2007. Decline of demersal resources in North-West Africa: An analysis of Mauritanian trawl-survey data over the past 25 years. Afr J Mar Sci 29: 331–345. [CrossRef] [Google Scholar]
  • Goulard M, Voltz M. 1992. Linear coregionalization model: Tools for estimation and choice of cross-variogram matrix. Math Geol 24: 269–286. [Google Scholar]
  • Guerra A. 1979. Fitting a von Bertalanffy expression to Octopus vulgaris growth. Investigación Pesquera 43: 319–326. [Google Scholar]
  • Hatanaka H. 1979. Studies on the fisheries biology of common octopus off the northwest coast of Africa. Bull Far Seas Fish Res Lab 17: 13–124. [Google Scholar]
  • Hernández-López JL, Castro-Hernández JJ, Hernández-García V. 2001. Age determined from the daily deposition of concentric rings on common octopus (Octopus vulgaris) beaks. Fish Bull 99: 679–684. [Google Scholar]
  • Khallahi B, Taleb H, Barham CB, Habibe BM, Kane EA, Bouzouma ME (Eds). 2020. Aménagement des ressources halieutiques et gestion de la biodiversité au service du développement durable. Rapport du Neuvième Groupe de Travail de l'IMROP, Nouadhibou. Mauritanie 11–14 février 2019. 246p. [Google Scholar]
  • Lorenz EN. 1956. Empirical orthogonal functions and statistical weather prediction. Massachusetts Institute of Technology, Department of Meteorology Cambridge. Statistical forecasting project, Scientific report 1. [Google Scholar]
  • Mangold K. 1983. Octopus vulgaris. In Boyle, PR (ed.), Cephalopod Life Cycles (I): Species Accounts. Orlando: Academic Press, 335–363. [Google Scholar]
  • Mangold K, von Boletzky S. 1973. New data on reproductive biology and growth of Octopus vulgaris. Mar Biol 19: 7–12. [CrossRef] [Google Scholar]
  • Meissa B, Gascuel D, Rivot E. 2013. Assessing stocks in data-poor African fisheries: A case study on the white grouper Epinephelus aeneus of Mauritania. Afr J Mar Sci 35: 253–267. [CrossRef] [Google Scholar]
  • Meissa B, Gascuel D. 2015. Overfishing of marine resources: Some lessons from the assessment of demersal stocks off Mauritania. ICES J Mar Sci 72: 414–427. [CrossRef] [Google Scholar]
  • MINES ParisTech / ARMINES. 2022. RGeostats: The Geostatistical R Package. Version: [12.0.1] Free download from: http://cg.ensmp.fr/rgeostats [Google Scholar]
  • National Oceanic and Atmospheric Administration. 2020. Global Coral Bleaching Monitoring, 5km, V.3.1, Monthly, 1985-Present. https://coastwatch.pfeg.noaa.gov/erddap/griddap/NOAA_DHW_monthly.html?sea_surface_temperature%5B(2021-06-15 T23: 00:00Z)%5D%5B(89.975):(-89.975)%5D%5B(-179.975):(179.975)%5D&.draw=surface&.vars=longitude%7Clatitude%7Csea_surface_temperature&.colorBar=%7C%7C%7C%7C%7C&.bgColor=0xffccccff [Google Scholar]
  • Otero J, González ÁF, Sieiro MP, Guerra Á. 2007. Reproductive cycle and energy allocation of Octopus vulgaris in Galician waters, NE Atlantic. Fish Res 85: 122–129. [CrossRef] [Google Scholar]
  • Otero J, Álvarez-Salgado XA, González ÁF, Miranda A, Groom SB, Cabanas JM, Casas G, Wheatley B, Guerra Á. 2008. Bottom-up control of common octopus Octopus vulgaris in the Galician upwelling system, northeast Atlantic Ocean. Mar Ecol Progr Ser 362: 181–192. [CrossRef] [Google Scholar]
  • Pease N. 1973. Fisheries of Mauritania, 1971. https://repository.library.noaa.gov/view/noaa/30110 [Google Scholar]
  • Petitgas P, Renard D, Desassis N, Huret M, Romagnan J-B, Doray M, Woillez M, Rivoirard J. 2020. Analysing temporal variability in spatial distributions using min-max autocorrelation factors: sardine eggs in the Bay of Biscay. Mathe Geosci 52: 337–354. [CrossRef] [MathSciNet] [Google Scholar]
  • Sanchez FJ, Iglesias J, Moxica C, Otero JJ. 1998. Growth of octopus (Octopus vulgaris) males and females under culture conditions. International Council for the Exploration of the Sea (ICES), CM 1998/M: 47. [Google Scholar]
  • Solow AR. 1994. Detecting change in the composition of a multispecies community. Biometrics 50: 556–565. [CrossRef] [PubMed] [Google Scholar]
  • Société Mauritanienne de Commercialisation Des Poissons. SMCP-SEM. 2020. Bulletin de statistiques 2019 Version 42. http://dtf.gov.mr/images/2019/SMCP2019.pdf. [Google Scholar]
  • Switzer P, Green AA. 1984. Min/max autocorrelation factors for multivariate spatial imagery. Technical report 6, Department of Statistics, Stanford University, CA. [Google Scholar]
  • Villanueva R. 1995. Experimental rearing and growth of planktonic Octopus vulgaris from hatching to settlement. Can J Fish Aquat Sci 52: 2639–2650. [CrossRef] [Google Scholar]
  • Wikle CK, Zammit-Mangion A, Cressie NAC. 2019. Spatio-temporal statistics with R. Chapman and Hall/CRC. [CrossRef] [Google Scholar]
  • Woillez M, Rivoirard J, Petitgas P. 2009. Using min/max autocorrelation factors of survey-based indicators to follow the evolution of fish stocks in time. Aquat Liv Resour 22: 193–200. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.