Aquat. Living Resour.
Volume 36, 2023
Topical Issue - NORA 4 - Native Oyster Restoration Alliance 4th Conference
Article Number 17
Number of page(s) 9
Published online 20 June 2023
  • Bayne B. 2002. A physiological comparison between Pacific oysters Crassostrea gigas and Sydney Rock oysters Saccostrea glomerata: food, feeding and growth in a shared estuarine habitat. Mar Ecol Progr Ser 232: 163–178. [CrossRef] [Google Scholar]
  • Beck MW, Brumbaugh RD, et al. 2009. Shellfish reefs at risk: A global analysis of problems and solutions. Arlington VA: The Nature Conservancy. [Google Scholar]
  • Bumguardner BW, King TL. 1996. Toxicity of Oxytetracycline and Calcein to Juvenile Striped Bass. Trans Am Fish Soc 125: 143–145. [CrossRef] [Google Scholar]
  • Buxton CD, Newell RC, et al. 1981. Response-surface analysis of the combined effects of exposure and acclimation temperatures on filtration, oxygen consumption and scope for growth in the oyster Ostrea edulis. Mar Ecol Progr Ser 6: 73–82. [CrossRef] [Google Scholar]
  • Chaparro OR, Mardones-Toledo DA, et al. 2018. Female-embryo relationships in Ostrea chilensis: brooding, embryo recognition, and larval hatching. Mar Biol 166: 10. [Google Scholar]
  • Davenport J, Chen X. 1987. A comparison of methods for the assessment of condition in the mussel (Mytilus edulis L.). J Molluscan Stud 53: 293–297. [CrossRef] [Google Scholar]
  • Day RW, Williams MC, et al. 1995. A comparison of fluorochromes for marking abalone shells. Mar Freshw Res 46: 599–605. [CrossRef] [Google Scholar]
  • Dick S, Kleine E, et al. 2001. The Operational Circulation Model of BSH (BSHcmod)Berichte des Bundesamtes für Seeschifffahrt und Hydrographie. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie, pp. 48. [Google Scholar]
  • Doldan MdS, de Rafélis M, et al. 2018. Age estimation of the oyster Ostrea puelchana determined from the hinge internal growth pattern. Mar Biol 165: 1–13. [CrossRef] [Google Scholar]
  • Evans O, Hick P, et al. 2016. Comparison of two external tagging methods used for the identification of individual adult Pacific oysters, Crassostrea gigas. J Shellfish Res 35: 837–840. [CrossRef] [Google Scholar]
  • Fitzpatrick M, Jeffs A, et al. 2010. Identification of the optimal fluorochrome for marking larvae of the pulmonate limpet Siphonaria australis. J Shellfish Res 29: 941–944. [CrossRef] [Google Scholar]
  • Fitzpatrick MP, Jeffs AG, et al. 2013. Efficacy of calcein as a chemical marker of green‐lipped mussel (Perna canaliculus) larvae and its potential use for tracking larval dispersal. Aquac Res 44: 345–353. [CrossRef] [Google Scholar]
  • Fujikura K, Okoshi K, et al. 2003. Strontium as a marker for estimation of microscopic growth rates in a bivalve. Mar Ecol Progr Ser 257: 295–301. [CrossRef] [Google Scholar]
  • Gancel HN, Carmichael RH, et al. 2019. Field mark-recapture of calcein-stained larval oysters (Crassostrea virginica) in a freshwater-dominated estuary. Estuar Coasts 42: 1558–1569. [CrossRef] [Google Scholar]
  • Gercken J, Schmidt A. 2014. Current status of the European oyster (Ostrea edulis) and possibilities for restoration in the German North Sea. Bfn-Skripten 379: 88. [Google Scholar]
  • Gerlach G. 2001. Zu Tisch bei den alten RömernSonderheft Archäologie in Deutschland, pp. 112. [Google Scholar]
  • Haag WR, Commens-Carson AM. 2008. Testing the assumption of annual shell ring deposition in freshwater mussels. Can J Fish Aquat Sci 65: 493–508. [CrossRef] [Google Scholar]
  • Herrmann M, Lepore ML, et al. 2009. Growth estimations of the Argentinean wedge clam Donax hanleyanus: A comparison between length-frequency distribution and size-increment analysis. J Exp Mar Biol Ecol 379: 8–15. [CrossRef] [Google Scholar]
  • Kaehler S, McQuaid C. 1999. Use of the fluorochrome calcein as an in situ growth marker in the brown mussel Perna perna. Mar Biol 133: 455–460. [CrossRef] [Google Scholar]
  • Kesler D, Downing J. 1997. Internal shell annuli yield inaccurate growth estimates in the freshwater mussels Elliptio complanata and Lampsilis radiata. Freshw Biol 37: 325–332. [CrossRef] [Google Scholar]
  • Kurth J, Loftin C, et al. 2007. PIT tags increase effectiveness of freshwater mussel recaptures. J North Am Bentholog Soc 26: 253–260. [CrossRef] [Google Scholar]
  • Liddel MK. 2008. A von Bertalanffy based model for the estimation of oyster (Crassostrea virginica) growth on restored oyster reefs in Chesapeake Bay, University of Maryland. [Google Scholar]
  • Lim BK, Sakurai N. 1999. Coded wire tagging of the short necked clam Ruditapes philippinarum. Fish Sci 65: 163–164. [CrossRef] [Google Scholar]
  • Linard C, Gueguen Y, et al. 2011. Calcein staining of calcified structures in pearl oyster Pinctada margaritifera and the effect of food resource level on shell growth. Aquaculture 313: 149–155. [CrossRef] [Google Scholar]
  • Lown AE, Hepburn LJ, et al. 2020. From individual vital rates to population dynamics: an integral projection model for European native oysters in a marine protected area. Aquat Conserv 30: 2191–2206. [CrossRef] [Google Scholar]
  • Merk V. 2015. Potential of Greenland cockles (Serripes groenlandicus) as high resolution Arctic climate archiveMaster thesis. Bremerhaven, University of Rostock, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung. [Google Scholar]
  • Merk V, Colsoul B, et al. 2020. Return of the native: survival, growth and condition of European oysters reintroduced to German offshore waters. Aquat Conserv: Mar Freshw Ecosyst 30: 2180–2190. [CrossRef] [Google Scholar]
  • Milano S, Nehrke G, et al. 2017. The effects of environment on Arctica islandica shell formation and architecture. Biogeosciences 14: 1577–1591. [CrossRef] [Google Scholar]
  • Milner N. 2001. At the cutting edge: using thin sectioning to determine season of death of the European oyster, Ostrea edulis. J Archaeolog Sci 28: 861–873. [CrossRef] [Google Scholar]
  • Nelson D. 1981. Relocation of Lampsilis higginsii in the upper Mississippi River AC Miller, compiler. Report of freshwater mollusks workshop, pp. 104–107. [Google Scholar]
  • Neves RJ, Moyer SN. 1988. Evaluation of techniques for age determination of freshwater mussels (Unionidae). Am Malacolog Bull 6: 179–188. [Google Scholar]
  • Northern Economics I. 2009. Valuation of Ecosystem Services from Shellfish Restoration, Enhancement and Management: A Review of the Literature. Pacific Shellfish Institute. [Google Scholar]
  • Pineda-Metz SEA, Merk V, et al., (2023). A machine learning model and biometric transformations to facilitate European oyster monitoring. Aquatic Conservation: Marine and Freshwater Ecosystems, 1–13. [Google Scholar]
  • Pogoda B. 2019. Current status of european oyster decline and restoration in Germany. Humanities 8: 12. [CrossRef] [Google Scholar]
  • Pogoda B, Boudry P, et al. 2020. NORA moving forward: Developing an oyster restoration network in Europe to support the Berlin Oyster Recommendation. Aquat Conserv: Mar Freshw Ecosyst 30: 2031–2037. [CrossRef] [Google Scholar]
  • Pogoda B, Brown J, et al. 2017. Berlin Oyster Recommendation on the Future of Native Oyster Restoration in Europe, Part I, Preface and RecommendationsKick-off Workshop Berlin "Native oyster restoration in Europe- current activities and future perspectives“. Berlin, pp. 5. [Google Scholar]
  • Pogoda B, Buck BH, et al. 2011. Growth performance and condition of oysters (Crassostrea gigas and Ostrea edulis) farmed in an offshore environment (North Sea, Germany). Aquaculture 319: 484–492. [CrossRef] [Google Scholar]
  • Pogoda B, Fofonova V, et al. in prep. Ecological history and nature conservation: Using larval drift modelling for hindcasting and forecasting to inform large-scale restoration programmes for European oyster habitat in the German Bight. [Google Scholar]
  • Riascos J, Guzman N, et al. 2007. Suitability of three stains to mark shells of Concholepas concholepas (Gastropoda) and Mesodesma donacium (Bivalvia). J Shellfish Res 26: 43–49. [CrossRef] [Google Scholar]
  • Richardson C, Collis S, et al. 1993. The age determination and growth rate of the European flat oyster, Ostrea edulis, in British waters determined from acetate peels of umbo growth lines. J Conseil 50: 493–500. [CrossRef] [Google Scholar]
  • Richardson CA. 2001. Molluscs as archives of environmental change. Oceanogr Mar Biol Annu Rev 39: 103–164. [Google Scholar]
  • Riley LW, Baker SM, et al. 2010. Self-adhesive wire markers for bivalve tag and recapture studies. Am Malacolog Bull 28: 183–184. [CrossRef] [Google Scholar]
  • Rödström EM, Jonsson PR. 2000. Survival and feeding activity of oyster spat (Ostrea edulis L) as a function of temperature and salinity with implications for culture policies on the Swedish west coast. J Shellfish Res 19: 799–808. [Google Scholar]
  • Russell M, Urbaniak L. 2004. Does calcein affect estimates of growth rates in sea urchins. Proceedings of the 11th international echinoderm conference, Balkema, Rotterdam, pp. 53–57. [Google Scholar]
  • Schöne BR, Fiebig J. 2009. Seasonality in the North Sea during the Allerød and Late Medieval Climate Optimum using bivalve sclerochronology. Int J Earth Sci 98: 83–98. [CrossRef] [Google Scholar]
  • Sejr MK, Jensen TK, et al. 2002. Annual growth bands in the bivalve Hiatella arctica validated by a mark-recapture study in NE Greenland. Polar Biol 25: 794–796. [CrossRef] [Google Scholar]
  • Spires JE, North EW. 2022. Marking the shells of juvenile and adult eastern oysters, Crassostrea virginica, with the fluorochrome dye calcein and measuring growth and mortality after marking. J Molluscan Stud 88: eyac004. [CrossRef] [Google Scholar]
  • Sytnik NA, Zolotnitskiy AP. 2014. On relation of filtration and respiration in the flat oyster (Ostrea edulis) at different water temperature. Hydrobiolog J 50: 93–99. [CrossRef] [Google Scholar]
  • Tada Y, Fujikura K, et al. 2010. In situ fluorochrome calcein marking of deep-sea molluscs using a new growth chamber. Aquat Ecol 44: 217–222. [CrossRef] [Google Scholar]
  • van der Geest M, van Gils JA, et al. 2011. Suitability of calcein as an in situ growth marker in burrowing bivalves. J Exp Mar Biol Ecol 399: 1–7. [CrossRef] [Google Scholar]
  • Von Bertalanffy L. 1957. Quantitative laws in metabolism and growth. Quart Rev Biol 32: 217–231. [CrossRef] [PubMed] [Google Scholar]
  • Walne PR, Mann R. 1975. Growth and biochemical composition in Ostrea edulis and Crassostrea gigas Ninth european marine biology symposium, Aberdeen University Press Scotland, pp. 587–607. [Google Scholar]
  • Wilson CA, Beckman DW, et al. 1987. Calcein as a fluorescent marker of otoliths of larval and juvenile fish. Trans Am Fish Soc 116: 668–670. [CrossRef] [Google Scholar]
  • Wilson JH, Simons J. 1985. Gametogenesis and breeding of Ostrea edulis on the west coast of Ireland. Aquaculture 46: 307–321. [CrossRef] [Google Scholar]
  • zu Ermgassen PSE, Bos OG et al. 2021. European Native Oyster Habitat Restoration Monitoring Handbook. The Zoological Society of London, UK., London, UK. [Google Scholar]
  • zu Ermgassen PSE, Gamble C et al. 2020. European Guidelines on Biosecurity in Native Oyster Restoration. The Zoological Society of London, London, UK. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.