Open Access
Review
Issue
Aquat. Living Resour.
Volume 35, 2022
Article Number 9
Number of page(s) 13
DOI https://doi.org/10.1051/alr/2022008
Published online 21 June 2022
  • Abd El-Naby FS, Naiel MA, Al-Sagheer AA, Negm SS. 2019. Dietary chitosan nanoparticles enhance the growth, production performance, and immunity in Oreochromis niloticus. Aquaculture 501: 82–89. [CrossRef] [Google Scholar]
  • Abdel-Latif HM, Dawood MA, Menanteau-Ledouble S, El-Matbouli M. 2020. Environmental transformation of n-TiO2 in the aquatic systems and their ecotoxicity in bivalve mollusks: a systematic review. Ecotoxicol Environ Saf 200: 110776. [CrossRef] [PubMed] [Google Scholar]
  • Abdel-Latif HM, Dawood MA, Mahmoud SF, Shukry M, Noreldin AE, Ghetas HA, Khallaf MA. 2021a. Copper oxide nanoparticles alter serum biochemical indices, induce histopathological alterations, and modulate transcription of cytokines, HSP70, and oxidative stress genes in Oreochromis niloticus. Animals 11: 652. [CrossRef] [PubMed] [Google Scholar]
  • Abdel-Latif HM, Shukry M, Euony OIE, Mohamed Soliman M, Noreldin AE, Ghetas HA, Dawood MA, Khallaf MA. 2021b. Hazardous effects of SiO2 nanoparticles on liver and kidney functions, histopathology characteristics, and transcriptomic responses in Nile Tilapia (Oreochromis niloticus) Juveniles. Biology 10: 183. [CrossRef] [PubMed] [Google Scholar]
  • Abdelnour SA, El-Hack MA, Khafaga AF, Noreldin AE, Arif M, Chaudhry MT, Losacco C, Abdeen A, Abdel-Daim MM. 2019. Impacts of rare earth elements on animal health and production: highlights of cerium and lanthanum. Sci Total Environ 672: 1021–1032. [CrossRef] [PubMed] [Google Scholar]
  • Al-Gabri NA, Saghir SA, Al-Hashedi SA, El-Far AH, Khafaga AF, Swelum AA, Al-Wajeeh AS, Mousa SA, Abd El-Hack ME, Naiel MA. 2021. Therapeutic potential of thymoquinone and its nanoformulations in pulmonary injury: a comprehensive review. Int J Nanomed 16: 5117. [CrossRef] [Google Scholar]
  • Alili L, Sack M, Karakoti AS, Teuber S, Puschmann K, Hirst SM, Reilly CM, Zanger K, Stahl W, Das S. 2011. Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor–stroma interactions. Biomaterials 32: 2918–2929. [CrossRef] [PubMed] [Google Scholar]
  • Amin KA, Hassan MS, Awad EST, Hashem KS. 2011. The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline. Int J Nanomed 6: 143. [CrossRef] [Google Scholar]
  • Arnold M, Badireddy A, Wiesner M, Di Giulio R, Meyer J. 2013. Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans. Arch Environ Contaminat Toxicol 65: 224–233. [CrossRef] [PubMed] [Google Scholar]
  • Artells E, Issartel J, Auffan M, Borschneck D, Thill A, Tella M, Brousset L, Rose J, Bottero JY, Thiery A. 2013. Exposure to cerium dioxide nanoparticles differently affect swimming performance and survival in two daphnid species. PloS ONE 8. [Google Scholar]
  • Arumugam A, Karthikeyan C, Hameed ASH, Gopinath K, Gowri S, Karthika V. 2015. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng C 49: 408–415. [CrossRef] [Google Scholar]
  • Aseyd Nezhad S, Es‐haghi A, Tabrizi MH. 2020. Green synthesis of cerium oxide nanoparticle using Origanum majorana L. leaf extract, its characterization and biological activities. Appl Organ Chem 34: e5314. [CrossRef] [Google Scholar]
  • Auffan M, Bertin D, Chaurand P, Pailles C, Dominici C, Rose J, Bottero JY, Thiery A. 2013. Role of molting on the biodistribution of CeO2 nanoparticles within Daphnia pulex. Water Res 47: 3921–3930. [CrossRef] [PubMed] [Google Scholar]
  • Auffan M, Masion A, Labille J, Diot MA, Liu W, Olivi L, Proux O, Ziarelli F, Chaurand P, Geantet C. 2014. Long-term aging of a CeO2 based nanocomposite used for wood protection. Environ Pollut 188: 1–7. [CrossRef] [PubMed] [Google Scholar]
  • Auguste M, Balbi T, Montagna M, Fabbri R, Sendra M, Blasco J, Canesi L. 2019. In vivo immunomodulatory and antioxidant properties of nanoceria (nCeO2) in the marine mussel Mytilus galloprovincialis. Compar Biochem Physiol C 219: 95–102. [Google Scholar]
  • Augustine R, Hasan A, Primavera R, Wilson RJ, Thakor AS, Kevadiya BD. 2020. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater Today Commun: 101692. [CrossRef] [Google Scholar]
  • Babitha K, Sreedevi A, Priyanka K, Sabu B, Varghese T. 2015. Structural characterization and optical studies of CeO2 nanoparticles synthesized by chemical precipitation. Indian J Pure Appl Phys 53: 596–603. [Google Scholar]
  • Baldim V, Bedioui F, Mignet N, Margaill I, Berret JF. 2018. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale 10: 6971–6980. [CrossRef] [PubMed] [Google Scholar]
  • Booth A, Størseth T, Altin D, Fornara A, Ahniyaz A, Jungnickel H, Laux P, Luch A, Sørensen L. 2015. Freshwater dispersion stability of PAA-stabilised cerium oxide nanoparticles and toxicity towards Pseudokirchneriella subcapitata. Sci Total Environ 505: 596–605. [CrossRef] [PubMed] [Google Scholar]
  • Bour A, Mouchet F, Verneuil L, Evariste L, Silvestre J, Pinelli E, Gauthier L. 2015. Toxicity of CeO2 nanoparticles at different trophic levels–effects on diatoms, chironomids and amphibians. Chemosphere 120: 230–236. [CrossRef] [PubMed] [Google Scholar]
  • Bour A, Mouchet F, Cadarsi S, Silvestre J, Verneuil L, Baqué D, Chauvet E, Bonzom JM, Pagnout C, Clivot H. 2016. Toxicity of CeO2 nanoparticles on a freshwater experimental trophic chain: a study in environmentally relevant conditions through the use of mesocosms. Nanotoxicology 10: 245–255. [PubMed] [Google Scholar]
  • Boxall AB, Chaudhry Q, Ardern-Jones A, Jefferson B, Watts C, Sinclair C, Baxter-Jones A, Aitken R, Watts C, Chaudrhry Q. 2008. Current and future predicted environmental exposure to engineered nanoparticles. Health & Environmental Research Online (HERO). Central Science Laboratory. York, UK [Google Scholar]
  • Bustamante P, Miramand P. 2005. Subcellular and body distributions of 17 trace elements in the variegated scallop Chlamys varia from the French coast of the Bay of Biscay. Sci Total Environ 337: 59–73. [CrossRef] [PubMed] [Google Scholar]
  • Canesi L, Ciacci C, Fabbri R, Marcomini A, Pojana G, Gallo G. 2012. Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar Environ Res 76: 16–21. [CrossRef] [PubMed] [Google Scholar]
  • Caputo F, Mameli M, Sienkiewicz A, Licoccia S, Stellacci F, Ghibelli L, Traversa E. 2017. A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity. Sci Rep 7: 1–13. [CrossRef] [PubMed] [Google Scholar]
  • Caputo F, De Nicola M, Sienkiewicz A, Giovanetti A, Bejarano I, Licoccia S, Traversa E, Ghibelli L. 2015. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis. Nanoscale 7: 15643–15656. [CrossRef] [PubMed] [Google Scholar]
  • Chigurupati S, Mughal MR, Okun E, Das S, Kumar A, McCaffery M, Seal S, Mattson MP. 2013. Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials 34: 2194–2201. [CrossRef] [PubMed] [Google Scholar]
  • Ciacci C, Canonico B, Bilaniĉovă D, Fabbri R, Cortese K, Gallo G, Marcomini A, Pojana G, Canesi L. 2012. Immunomodulation by different types of N-oxides in the hemocytes of the marine bivalve Mytilus galloprovincialis. PloS ONE 7: e36937–e36937. [CrossRef] [PubMed] [Google Scholar]
  • Ciofani G, Genchi GG, Mazzolai B, Mattoli V. 2014. Transcriptional profile of genes involved in oxidative stress and antioxidant defense in PC12 cells following treatment with cerium oxide nanoparticles. Biochim Biophys Acta 1840: 495–506. [CrossRef] [PubMed] [Google Scholar]
  • Colon J, Hsieh N, Ferguson A, Kupelian P, Seal S, Jenkins DW, Baker CH. 2010. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine 6: 698–705. [CrossRef] [PubMed] [Google Scholar]
  • Correia AT, Rebelo D, Marques J, Nunes B. 2019. Effects of the chronic exposure to cerium dioxide nanoparticles in Oncorhynchus mykiss: assessment of oxidative stress, neurotoxicity and histological alterations. Environ Toxicol Pharmacol 68: 27–36. [CrossRef] [PubMed] [Google Scholar]
  • Cross RK, Tyler CR, Galloway TS. 2019. The fate of cerium oxide nanoparticles in sediments and their routes of uptake in a freshwater worm. Nanotoxicology 13: 894–908. [CrossRef] [PubMed] [Google Scholar]
  • Dahle JT, Livi K, Arai Y. 2015. Effects of pH and phosphate on CeO2 nanoparticle dissolution. Chemosphere 119: 1365–1371. [CrossRef] [PubMed] [Google Scholar]
  • Darroudi M, Hoseini SJ, Kazemi Oskuee R, Hosseini HA, Gholami L, Gerayli S. 2014. Food-directed synthesis of cerium oxide nanoparticles and their neurotoxicity effects. Ceram Int 40: 7425–7430. [CrossRef] [Google Scholar]
  • Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ. 2007. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28: 1918–1925. [CrossRef] [PubMed] [Google Scholar]
  • Das S, Singh S, Dowding JM, Oommen S, Kumar A, Sayle TXT, Saraf S, Patra CR, Vlahakis NE, Sayle DC, Self WT, Seal S. 2012. The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials 33: 7746–7755. [CrossRef] [PubMed] [Google Scholar]
  • Deshpande S, Patil S, Kuchibhatla SV, Seal S. 2005. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett 87: 133113. [CrossRef] [Google Scholar]
  • Dogra Y, Arkill KP, Elgy C, Stolpe B, Lead J, Valsami-Jones E, Tyler CR, Galloway TS. 2016. Cerium oxide nanoparticles induce oxidative stress in the sediment-dwelling amphipod Corophium volutator. Nanotoxicology 10: 480–487. [CrossRef] [PubMed] [Google Scholar]
  • dos Santos CCL, Passos Farias IA, Reis Albuquerque AdJd, e Silva PMdF, Costa One GMd, Sampaio FC. 2014. Antimicrobial activity of nano cerium oxide (IV) (CeO2) against Streptococcus mutans. BMC Proc 8: P48. [CrossRef] [Google Scholar]
  • Eriksson P, Tal AA, Skallberg A, Brommesson C, Hu Z, Boyd RD, Olovsson W, Fairley N, Abrikosov IA, Zhang X, Uvdal K. 2018. Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement. Sci Rep 8: 6999. [CrossRef] [PubMed] [Google Scholar]
  • Farahmandjou M, Zarinkamar M, Firoozabadi TP. 2016. Synthesis of Cerium Oxide (CeO2) nanoparticles using simple CO-precipitation method. Rev Mexic Física 62: 496–499.‏ [MathSciNet] [Google Scholar]
  • Felix LC, Ortega VA, Ede JD, Goss GG. 2013. Physicochemical characteristics of polymer-coated metal-oxide nanoparticles and their toxicological effects on zebrafish (Danio rerio) development. Environ Sci Technol 47: 6589–6596. [CrossRef] [PubMed] [Google Scholar]
  • Gagnon C, Bruneau A, Turcotte P, Pilote M, Gagné F. 2018. Fate of cerium oxide nanoparticles in natural waters and immunotoxicity in exposed rainbow trout. J Nanomed Nanotechnol 9: 489. [CrossRef] [Google Scholar]
  • Gaiser BK, Fernandes TF, Jepson M, Lead JR, Tyler CR, Stone V. 2009. Assessing exposure, uptake and toxicity of silver and cerium dioxide nanoparticles from contaminated environments. Environ Health 8: S2. [CrossRef] [PubMed] [Google Scholar]
  • Gaiser BK, Fernandes TF, Jepson MA, Lead JR, Tyler CR, Baalousha M, Biswas A, Britton GJ, Cole PA, Johnston BD, Ju-Nam Y, Rosenkranz P, Scown TM, Stone V. 2012. Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem 31: 144–154. [CrossRef] [PubMed] [Google Scholar]
  • Gao F, Lu Q, Komarneni S. 2006. Fast synthesis of cerium oxide nanoparticles and nanorods. J Nanosci Nanotechnol 6: 3812–3819.‏. [CrossRef] [PubMed] [Google Scholar]
  • Garaud M, Trapp J, Devin S, Cossu-Leguille C, Pain-Devin S, Felten V, Giamberini L. 2015. Multibiomarker assessment of cerium dioxide nanoparticle (nCeO2) sublethal effects on two freshwater invertebrates, Dreissena polymorpha and Gammarus roeseli. Aquat Toxicol 158: 63–74. [CrossRef] [PubMed] [Google Scholar]
  • Garaud M, Auffan M, Devin S, Felten V, Pagnout C, Pain-Devin S, Proux O, Rodius F, Sohm B, Giamberini L. 2016. Integrated assessment of ceria nanoparticle impacts on the freshwater bivalve Dreissena polymorpha. Nanotoxicology 10: 935–944. [CrossRef] [PubMed] [Google Scholar]
  • García A, Espinosa R, Delgado L, Casals E, González E, Puntes V, Barata C, Font X, Sánchez A. 2011. Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination 269: 136–141. [CrossRef] [Google Scholar]
  • Giese B, Klaessig F, Park B, Kaegi R, Steinfeldt M, Wigger H, von Gleich A, Gottschalk F. 2018. Risks, release and concentrations of engineered nanomaterial in the environment. Sci Rep 8: 1565. [CrossRef] [PubMed] [Google Scholar]
  • Gottschalk F, Lassen C, Kjoelholt J, Christensen F, Nowack B. 2015. Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. Int J Environ Res Public Health 12: 5581–5602. [CrossRef] [PubMed] [Google Scholar]
  • Grillone A, Li T, Battaglini M, Scarpellini A, Prato M, Takeoka S, Ciofani G. 2017. Preparation, characterization, and preliminary in vitro testing of nanoceria-loaded liposomes. Nanomaterials 7: 276. [CrossRef] [Google Scholar]
  • Grulke E, Reed K, Beck M, Huang X, Cormack A, Seal S. 2014. Nanoceria: factors affecting its pro-and anti-oxidant properties. Environ Sci Nano 1: 429–444. [CrossRef] [Google Scholar]
  • Heinrichs ME, Mori C, Dlugosch L. 2020. Complex Interactions Between Aquatic Organisms and Their Chemical Environment Elucidated from Different Perspectives, YOUMARES 9-The Oceans: Our Research, Our Future. Cham: Springer, pp. 279–297. [CrossRef] [Google Scholar]
  • Hoecke KV, Quik JTK, Mankiewicz-Boczek J, Schamphelaere KACD, Elsaesser A, Meeren PVD, Barnes C, McKerr G, Howard CV, Meent DVD, Rydzyński K, Dawson KA, Salvati A, Lesniak A, Lynch I, Silversmit G, Samber BD, Vincze L, Janssen CR. 2009. Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 43: 4537–4546. [CrossRef] [PubMed] [Google Scholar]
  • Huang Y, Ren J, Qu X. 2019. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 119: 4357–4412. [CrossRef] [PubMed] [Google Scholar]
  • Hwang PP, Chou MY. 2013. Zebrafish as an animal model to study ion homeostasis. Pflügers Arch 465: 1233–1247. [CrossRef] [PubMed] [Google Scholar]
  • Ismael NE, Abd El-hameed SA, Salama AM, Naiel MA, Abdel-Latif HM. 2021. The effects of dietary clinoptilolite and chitosan nanoparticles on growth, body composition, haemato-biochemical parameters, immune responses, and antioxidative status of Nile tilapia exposed to imidacloprid. Environ Sci Pollut Res: 1–16. [Google Scholar]
  • Jalilpour M, Fathalilou M. 2012. Effect of aging time and calcination temperature on the cerium oxide nanoparticles synthesis via reverse co-precipitation method. Int J Phys Sci 7: 944–874. [Google Scholar]
  • Jemec A, Djinović P, Tišler T, Pintar A. 2012. Effects of four CeO2 nanocrystalline catalysts on early-life stages of zebrafish Danio rerio and crustacean Daphnia magna. J Hazard Mater 219-220: 213–220. [CrossRef] [PubMed] [Google Scholar]
  • Jemec A, Djinović P, Črnivec IGO, Pintar A. 2015. The hazard assessment of nanostructured CeO2-based mixed oxides on the zebrafish Danio rerio under environmentally relevant UV-A exposure. Sci Total Environ 506-507: 272–278. [CrossRef] [PubMed] [Google Scholar]
  • Johnson AC, Park B. 2012. Predicting contamination by the fuel additive cerium oxide engineered nanoparticles within the United Kingdom and the associated risks. Environ Toxicol Chem 31: 2582–2587. [CrossRef] [PubMed] [Google Scholar]
  • Jun X, Zhao HZ, LU GH. 2013. Effects of selected metal oxide nanoparticles on multiple biomarkers in Carassius auratus. Biomed Environ Sci 26: 742–749. [PubMed] [Google Scholar]
  • Karakoti AS, Monteiro-Riviere NA, Aggarwal R, Davis JP, Narayan RJ, Self WT, McGinnis J, Seal S. 2008. Nanoceria as antioxidant: synthesis and biomedical applications. JOM 60: 33–37. [CrossRef] [PubMed] [Google Scholar]
  • Kargar H, Ghazavi H, Darroudi M. 2015. Size-controlled and bio-directed synthesis of ceria nanopowders and their in vitro cytotoxicity effects. Ceram Int 41: 4123–4128. [CrossRef] [Google Scholar]
  • Keller AA, McFerran S, Lazareva A, Suh S. 2013. Global life cycle releases of engineered nanomaterials. J Nanopart Res 15: 1692. [CrossRef] [Google Scholar]
  • Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z. 2010. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44: 1962–1967. [CrossRef] [PubMed] [Google Scholar]
  • Ketzial JJ, Nesaraj AS. 2011. Synthesis of CeO2 nanoparticles by chemical precipitation and the effect of a surfactant on the distribution of particle sizes. J Ceram Process Res 12: 74–79. [Google Scholar]
  • Khan I, Saeed K, Khan I. 2019. Nanoparticles: Properties, applications and toxicities. Arab J Chem 12: 908–931. [CrossRef] [Google Scholar]
  • Khan MS, Qureshi NA, Jabeen F. 2018. Ameliorative role of nano-ceria against amine coated Ag-NP induced toxicity in Labeo rohita. Appl Nanosci 8: 323–337. [CrossRef] [Google Scholar]
  • Koehlé-Divo V, Cossu-Leguille C, Pain-Devin S, Simonin C, Bertrand C, Sohm B, Mouneyrac C, Devin S, Giambérini L. 2018. Genotoxicity and physiological effects of CeO2 NPs on a freshwater bivalve (Corbicula fluminea). Aquat Toxicol 198: 141–148. [CrossRef] [PubMed] [Google Scholar]
  • Korsvik C, Patil S, Seal S, Self WT. 2007. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun 10: 1056–1058. [CrossRef] [Google Scholar]
  • Krysanov EY, Demidova TB. 2012. The effect of low concentrations of nanocrystalline cerium dioxide on the embryotoxicity of doxorubicin for fish. In Doklady Biological Sciences (Vol. 443, No. 1, p. 117). Springer Science & Business Media. [CrossRef] [PubMed] [Google Scholar]
  • Lasley-Rasher RS, Nagel K, Angra A, Yen J. 2016. Intoxicated copepods: ingesting toxic phytoplankton leads to risky behaviour. Proc Roy Soc B 283: 20160176. [CrossRef] [PubMed] [Google Scholar]
  • Lee SW, Kim SM, Choi J. 2009. Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure. Environ Toxicol Pharmacol 28: 86–91. [CrossRef] [PubMed] [Google Scholar]
  • Li Y, Li P, Yu H, Bian Y. 2016. Recent advances (2010–2015) in studies of cerium oxide nanoparticles’ health effects. Environ Toxicol Pharmacol 44: 25–29. [CrossRef] [PubMed] [Google Scholar]
  • Manier N, Garaud M, Delalain P, Aguerre-Chariol O, Pandard P. 2011. Behaviour of ceria nanoparticles in standardized test media–influence on the results of ecotoxicological tests. J Phys: Conf Ser 304: 012058. [CrossRef] [Google Scholar]
  • Maqbool Q, Nazar M, Naz S, Hussain T, Jabeen N, Kausar R, Anwaar S, Abbas F, Jan T. 2016. Antimicrobial potential of green synthesized CeO(2) nanoparticles from Olea europaea leaf extract. Int J Nanomed 11: 5015–5025. [CrossRef] [Google Scholar]
  • Mehana ESE, Khafaga AF, Elblehi SS, Abd El-HackME, Naiel MA, Bin-Jumah M, Othman SI, Allam AA. 2020. Biomonitoring of heavy metal pollution using acanthocephalans parasite in ecosystem: an updated overview. Animals 10: 811. [CrossRef] [Google Scholar]
  • Michalec FG, Holzner M, Menu D, Hwang JS, Souissi S. 2013a. Behavioral responses of the estuarine calanoid copepod Eurytemora affinis to sub-lethal concentrations of waterborne pollutants. Aquat Toxicol 138: 129–138. [CrossRef] [PubMed] [Google Scholar]
  • Michalec FG, Kâ S, Holzner M, Souissi S, Ianora A, Hwang JS. 2013b. Changes in the swimming behavior of Pseudodiaptomus annandalei (Copepoda, Calanoida) adults exposed to the diatom toxin 2-trans, 4-trans decadienal. Harmful Algae 30: 56–64. [CrossRef] [Google Scholar]
  • Montes MO, Hanna SK, Lenihan HS, Keller AA. 2012. Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. J Hazard Mater 225-226: 139–145. [CrossRef] [PubMed] [Google Scholar]
  • Munusamy S, Bhakyaraj K, Vijayalakshmi L, Stephen A, Narayanan V. 2014. Synthesis and characterization of cerium oxide nanoparticles using Curvularia lunata and their antibacterial properties. Int J Innov Res Sci Eng. 2: 318. [Google Scholar]
  • Nadeem M, Khan R, Afridi K, Nadhman A, Ullah S, Faisal S, Mabood ZU, Hano C, Abbasi BH. 2020. Green synthesis of cerium oxide nanoparticles (CeO2 NPs) and their antimicrobial applications: a review. Int J Nanomed 15: 5951. [CrossRef] [Google Scholar]
  • Naiel MA, Ismael NE, Abd El-hameed SA, Amer MS. 2020. The antioxidative and immunity roles of chitosan nanoparticle and vitamin C-supplemented diets against imidacloprid toxicity on Oreochromis niloticus. Aquaculture 523: 735219. [CrossRef] [Google Scholar]
  • Nelson BC, Johnson ME, Walker ML, Riley KR, Sims CM. 2016a. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants 5: 15. [CrossRef] [Google Scholar]
  • Nelson BC, Johnson ME, Walker ML, Riley KR, Sims CM. 2016b. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants 5: 15. [CrossRef] [Google Scholar]
  • Nyoka M, Choonara YE, Kumar P, Kondiah PP, Pillay V. 2020. Synthesis of cerium oxide nanoparticles using various methods: implications for biomedical applications. Nanomaterials 10: 242. [CrossRef] [Google Scholar]
  • Okuda M, Suzumoto Y, Yamashita I. 2011. Bioinspired synthesis of homogenous cerium oxide nanoparticles and two- or three-dimensional nanoparticle arrays using protein supramolecules. Crys Growth Des 11: 2540–2545. [CrossRef] [Google Scholar]
  • Özel RE, Hayat A, Wallace KN, Andreescu S. 2013. Effect of cerium oxide nanoparticles on intestinal serotonin in zebrafish. RSC Adv 3: 15298–15309.‏ [CrossRef] [PubMed] [Google Scholar]
  • Patil S, Kuiry SC, Seal S, Vanfleet R. 2002. Synthesis of nanocrystalline ceria particles for high temperature oxidation resistant coating. J Nanopart Res 4: 433–438. [CrossRef] [Google Scholar]
  • Perullini M, Aldabe Bilmes SA, Jobbágy M. 2013. Cerium oxide nanoparticles: structure, applications, reactivity, and eco-toxicology. in: Brayner, R, Fiévet, F, Coradin, T (Eds.), Nanomaterials: A Danger or a Promise? A Chemical and Biological Perspective. London: Springer London, pp. 307–333. [CrossRef] [Google Scholar]
  • Pinjari DV, Pandit AB. 2011. Room temperature synthesis of crystalline CeO2 nanopowder: advantage of sonochemical method over conventional method. Ultrason Sonochem 18: 1118–1123. [CrossRef] [PubMed] [Google Scholar]
  • Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JES, Seal S, Self WT. 2010. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun 46: 2736–2738. [CrossRef] [PubMed] [Google Scholar]
  • Plakhova TV, Romanchuk AY, Yakunin SN, Dumas T, Demir S, Wang S, Minasian SG, Shuh DK, Tyliszczak T, Shiryaev AA. 2016. Solubility of nanocrystalline cerium dioxide: Experimental data and thermodynamic modeling. J Phys Chem C 120: 22615–22626. [CrossRef] [Google Scholar]
  • Priya GS, Kanneganti A, Kumar KA, Rao KV, Bykkam S. 2014. Biosynthesis of Cerium oxide nanoparticles using Aloe barbadensis miller gel. Int J Sci Res Publ. 4: 199–224. [Google Scholar]
  • Putri GE, Rilda Y, Syukri S, Labanni A, Arief S. 2021. Highly antimicrobial activity of cerium oxide nanoparticles synthesized using Moringa oleifera leaf extract by a rapid green precipitation method. J Mater Res Technol 15: 2355–2364. [CrossRef] [Google Scholar]
  • Qin F, Shen T, Yang H, Qian J, Zou D, Li J, Liu H, Zhang Y, Song X. 2019. Dietary nano cerium oxide promotes growth, relieves ammonia nitrogen stress, and improves immunity in crab (Eriocheir sinensis). Fish Shellfish Immunol 92: 367–376. [CrossRef] [PubMed] [Google Scholar]
  • Quik JTK. 2013. Fate of nanoparticles in the aquatic environment: removal of engineered nanomaterials from the water phase under environmental conditions. Radboud University Nijmegen, The Netherlands. [Google Scholar]
  • Quik JTK, Velzeboer I, Wouterse M, Koelmans AA, van de Meent D. 2014. Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Res 48: 269–279. [CrossRef] [PubMed] [Google Scholar]
  • Quik JTK, Stuart MC, Wouterse M, Peijnenburg W, Hendriks AJ, van de Meent D. 2012. Natural colloids are the dominant factor in the sedimentation of nanoparticles. Environ Toxicol Chem 31: 1019–1022. [CrossRef] [PubMed] [Google Scholar]
  • Quik JTK, Lynch I, Hoecke KV, Miermans CJH, Schamphelaere KACD, Janssen CR, Dawson KA, Stuart MAC, Meent DVD. 2010. Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere. 81: 711–715. [CrossRef] [PubMed] [Google Scholar]
  • Rajeshkumar S, Naik P. 2018. Synthesis and biomedical applications of cerium oxide nanoparticles – a review. Biotechnol Rep 17: 1–5. [CrossRef] [PubMed] [Google Scholar]
  • Ramirez L, Ramseier Gentile S, Zimmermann S, Stoll S. 2019. Behavior of TiO2 and CeO2 nanoparticles and polystyrene nanoplastics in bottled mineral, drinking and Lake Geneva waters. Impact of water hardness and natural organic matter on nanoparticle surface properties and aggregation. Water 11: 721. [CrossRef] [Google Scholar]
  • Ravishankar TN, Ramakrishnappa T, Nagaraju G, Rajanaika H. 2015. Synthesis and characterization of CeO2 nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies. Chemistry Open 4: 146–154. [Google Scholar]
  • Reed K, Cormack A, Kulkarni A, Mayton M, Sayle D, Klaessig F, Stadler B. 2014. Exploring the properties and applications of nanoceria: is there still plenty of room at the bottom?. Environ Sci 1: 390–405. [Google Scholar]
  • Rodea-Palomares I, Boltes K, Fernández-Piñas F, Leganés F, García-Calvo E, Santiago J, Rosal R. 2010. Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicolog Sci 119: 135–145. [Google Scholar]
  • Rogers NJ, Franklin NM, Apte SC, Batley GE, Angel BM, Lead JR, Baalousha M. 2010. Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ Chem 7: 50–60. [CrossRef] [Google Scholar]
  • Roh JY, Park YK, Park K, Choi J. 2010. Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol 29: 167–172. [CrossRef] [PubMed] [Google Scholar]
  • Röhder LA, Brandt T, Sigg L, Behra R. 2014. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii. Aquat Toxicol. 152: 121–130. [CrossRef] [PubMed] [Google Scholar]
  • Rosenkranz P, Fernández-Cruz ML, Conde E, Ramírez-Fernández MB, Flores JC, Fernández M, Navas JM. 2012. Effects of cerium oxide nanoparticles to fish and mammalian cell lines: an assessment of cytotoxicity and methodology. Toxicol Vitro. 26: 888–896. [CrossRef] [Google Scholar]
  • Rozhin P, Melchionna M, Fornasiero P, Marchesan S. 2021. Nanostructured ceria: biomolecular templates and (bio) applications. Nanomaterials 11: 2259. [CrossRef] [PubMed] [Google Scholar]
  • Rundle A, Robertson AB, Blay AM, Butler KMA, Callaghan NI, Dieni CA, MacCormack TJ. 2016. Cerium oxide nanoparticles exhibit minimal cardiac and cytotoxicity in the freshwater fish Catostomus commersonii. Comparat Biochem Physiol. 181-182: 19–26. [Google Scholar]
  • Sendra M, Moreno I, Blasco J. 2019. Toxicity of metal and metal oxide engineered nanoparticles to phytoplankton. Ecotoxicology of Nanoparticles in Aquatic Systems. Boca Raton, FL: CRC, pp. 1–37. [Google Scholar]
  • Sendra M, Volland M, Balbi T, Fabbri R, Yeste MP, Gatica JM, Canesi L, Blasco J. 2018. Cytotoxicity of CeO2 nanoparticles using in vitro assay with Mytilus galloprovincialis hemocytes: relevance of zeta potential, shape and biocorona formation. Aquat Toxicol 200: 13–20. [CrossRef] [PubMed] [Google Scholar]
  • Shirke BS, Patil AA, Hankare PP, Garadkar KM. 2011. Synthesis of cerium oxide nanoparticles by microwave technique using propylene glycol as a stabilizing agent. J Mater Sci: Mater Electr. 22: 200–203. [CrossRef] [Google Scholar]
  • Singh AV, Bandgar BM, Kasture M, Prasad B, Sastry M. 2005. Synthesis of gold, silver and their alloy nanoparticles using bovine serum albumin as foaming and stabilizing agent. J Mater Chem 15: 5115–5121. [CrossRef] [Google Scholar]
  • Soren S, Jena SR, Samanta L, Parhi P. 2015. Antioxidant potential and toxicity study of the cerium oxide nanoparticles synthesized by microwave-mediated synthesis. Appl Biochem Biotechnol 177: 148–161. [CrossRef] [PubMed] [Google Scholar]
  • Sterner RW. 2009. Role of zooplankton in aquatic ecosystems, Encyclopedia of Inland Waters. Elsevier Inc, pp. 678–688. [CrossRef] [Google Scholar]
  • Sun C, Li H, Chen L. 2012. Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ Sci 5: 8475–8505. [CrossRef] [Google Scholar]
  • Sun TY, Gottschalk F, Hungerbühler K, Nowack B. 2014. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185: 69–76. [CrossRef] [PubMed] [Google Scholar]
  • Taylor NS, Merrifield R, Williams TD, Chipman JK, Lead JR, Viant MR. 2016. Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations. Nanotoxicology 10: 32–41. [PubMed] [Google Scholar]
  • Telek G, Scoazec JY, Chariot J, Ducroc R, Feldmann G, Rozé C. 1999. Cerium-based histochemical demonstration of oxidative stress in taurocholate-induced acute pancreatitis in rats: a confocal laser scanning microscopic study. J Histochem Cytochem 47: 1201–1212. [CrossRef] [PubMed] [Google Scholar]
  • Tella M, Auffan M, Brousset L, Morel E, Proux O, Chanéac C, Angeletti B, Pailles C, Artells E, Santaella C. 2015. Chronic dosing of a simulated pond ecosystem in indoor aquatic mesocosms: fate and transport of CeO2 nanoparticles. Environ Sci 2: 653–663. [Google Scholar]
  • Teske SS, Detweiler CS. 2015. The biomechanisms of metal and metal-oxide nanoparticles’ interactions with cells. Int J Environ Res Public Health 12: 1112–1134. [CrossRef] [PubMed] [Google Scholar]
  • Thakur N, Manna P, Das J. 2019. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J Nanobiotechnol 17: 1–27. [CrossRef] [Google Scholar]
  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM. 2006. Cytotoxicity of CeO2 nanoparticles for Escherichia coli Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40: 6151–6156. [CrossRef] [PubMed] [Google Scholar]
  • Thovhogi N, Diallo A, Gurib-Fakim A, Maaza M. 2015. Nanoparticles green synthesis by Hibiscus sabdariffa flower extract: main physical properties. J Alloys Compd 647: 392–396. [CrossRef] [Google Scholar]
  • Van Hoecke K, De Schamphelaere KA, Van der Meeren P, Smagghe G, Janssen CR. 2011. Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environ Pollut 159: 970–976. [CrossRef] [PubMed] [Google Scholar]
  • Wang H, Keller AA, Clark KK. 2011. Natural organic matter removal by adsorption onto magnetic permanently confined micelle arrays. J Hazard Mater 194: 156–161. [CrossRef] [PubMed] [Google Scholar]
  • Weinberg H, Galyean A, Leopold M. 2011. Evaluating engineered nanoparticles in natural waters. Trends Anal Chem 30: 72–83. [CrossRef] [Google Scholar]
  • Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. 2019. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48: 1004–1076. [CrossRef] [PubMed] [Google Scholar]
  • Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE. 2008. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS nano 2: 2121–2134. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Xue Y, Luan Q, Yang D, Yao X, Zhou K. 2011. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J Phys Chem C 115: 4433–4438. [CrossRef] [Google Scholar]
  • Yao S, Xu W, Johnston-Peck AC, Zhao F, Liu Z, Luo S, Senanayake S, Martínez-Arias A, Liu W, Rodriguez J. 2014. Morphological effects of the nanostructured ceria support on the activity and stability of CuO/CeO2 catalysts for the water-gas shift reaction. Phys Chem Chem Phys 16: 17183–17195. [CrossRef] [PubMed] [Google Scholar]
  • Yin L, Wang Y, Pang G, Koltypin Y, Gedanken A. 2002. Sonochemical synthesis of cerium oxide nanoparticles—effect of additives and quantum size effect. J Colloid Interface Sci 246: 78–84. [CrossRef] [PubMed] [Google Scholar]
  • Zhang J, Guo W, Li Q, Wang Z, Liu S. 2018. The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environ Sci 5: 2482–2499. [Google Scholar]
  • Zhang W, Pu Z, Du S, Chen Y, Jiang L. 2016. Fate of engineered cerium oxide nanoparticles in an aquatic environment and their toxicity toward 14 ciliated protist species. Environ Pollut 212: 584–591. [CrossRef] [PubMed] [Google Scholar]
  • Zhang Z, He X, Zhang H, Ma Y, Zhang P, Ding Y, Zhao Y. 2011. Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3: 816–822. [CrossRef] [PubMed] [Google Scholar]
  • Zhao L, Peralta-Videa JR, Varela-Ramirez A, Castillo-Michel H, Li C, Zhang J, Aguilera RJ, Keller AA, Gardea-Torresdey JL. 2012. Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: Insight into the uptake mechanism. J Hazard Mater 225: 131–138. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.