Open Access
Issue
Aquat. Living Resour.
Volume 35, 2022
Article Number 16
Number of page(s) 17
DOI https://doi.org/10.1051/alr/2022016
Published online 07 October 2022
  • Akima H, Gebhardt A. 2021. akima: Interpolation of Irregularly and Regularly Spaced Data. R package version 0.6-2.3. Available at https://CRAN.R-project.org/package=akima. [Google Scholar]
  • Annala JA, Breen PA. 1989. Yield- and egg-per-recruit analyses for the New Zealand rock lobster, Jasus edwardsii. New Zealand Journal of Marine and Freshwater Research 23: 93–105. [CrossRef] [Google Scholar]
  • Ault JS, Smith SG, Bohnsack JA, Luo J, Stevens MH, DiNardo GT, Johnson MW, Bryan DR. 2019. Length-based risk analysis for assessing sustainability of data-limited tropical reef fisheries. ICES J Mar Sci 76: 165–180. [CrossRef] [Google Scholar]
  • Bannerman PO, Cowx IG. 2002. Stock assessment of the big-eye grunt (Brachydeuterus auritus, Val.) fishery in Ghanaian coastal waters. Fish Res 59: 197–207. [CrossRef] [Google Scholar]
  • Ben-Hasan A, Walters C, Hordyk A, Christensen V, Al-Husaini M. 2021. Alleviating growth and recruitment overfishing through simple management changes: Insights from an overexploited long-lived fish. Mar Coast Fish 13: 87–98. [CrossRef] [Google Scholar]
  • Coggins Jr. LG, Catalano MJ, Allen MS, Pine III WE, Walters CJ. 2007. Effects of cryptic mortality and the hidden costs of using length limits in fishery management. Fish Fish 8: 196–210. [CrossRef] [Google Scholar]
  • Froese R, Stern-Pirlot A, Winker H, Gascuel D. 2008. Size matters: how single-species management can contribute to ecosystem-based fisheries management. Fish Res 92: 231–241. [CrossRef] [Google Scholar]
  • Gabriel WL, Mace PM. 1999. A review of biological reference points in the context of the precautionary approach. Proceedings, 5th NMFS NSAW. NOAA Tech. Memo. NMFS-F/SPO-40. [Google Scholar]
  • Gayanilo Jr. FC, Sparre P, Pauly D. 2005. FAO-ICLARM Stock Assessment Tools II (FiSAT II). Revised Version. User's Guide. FAO, Rome, 168 p. [Google Scholar]
  • Gislason H, Daan N, Rice JC, Pope JG. 2010. Size, growth, temperature and the natural mortality of marine fish. Fish Fish 11: 149–158. [CrossRef] [Google Scholar]
  • Goodyear CP. 1993. Spawning stock biomass per recruit in fisheries management: foundation and current use. Can Spec Pub Fish Aquat Sci 120: 67–81. [Google Scholar]
  • Gulf of Mexico SPR Management Strategy Committee. 1996. An evaluation of the use of SPR levels as the basis for overfishing definitions in Gulf of Mexico finfish fishery management plans, Gulf of Mexico Fishery Management Council, Final Report. [Google Scholar]
  • Gulland JA, Boerema LK. 1973. Scientific advice on catch levels. Fish Bull 71: 325–335. [Google Scholar]
  • Huynh Q. 2020. Description of the delay-difference and delay-differential models. Available at https://openmse.com/features-assessment-models/1-dd/. [Google Scholar]
  • Laurec A, Le Guen J-C. 1981. Dynamique des populations marines exploitées, Tome 1, Concepts et modèles. CNEXO/Centre Océanologique de Bretagne, Brest, France, 117 p. [Google Scholar]
  • Liao B, Liu Q, Wang X, Baset A, Soomro SH, Memon AM, Memon KH, Kalhoro MA. 2016a. Application of a continuous time delay-differential model for the population dynamics of winter-spring cohort of neon flying squid (Ommastrephes bartramii, Lesueur 1821) in the north-west Pacific Ocean. Mar Biol Assoc 96: 1527–1534. [CrossRef] [Google Scholar]
  • Liao B, Liu Q, Zhang K, Baset A, Memon AM, Memon KH, Han Y. 2016b. A Continuous time delay-differential type model (CTDDM) applied to stock assessment of the southern Atlantic albacore Thunnus alalonga. Chin J Oceanol Limnol 34: 977–984. [CrossRef] [Google Scholar]
  • Liao B, Karim E. 2021. Evaluate the power of a modified continuous time D-DM model, using BSPM and ASPM as benchmarks: a case study of a slow-growing tuna species (Thunnus alalunga Bonnaterre, 1788). Iran J Fish Sci 20: 1740–1756. [Google Scholar]
  • Mace PM, Sissenwine MP. 1993. How much spawning per recruit is enough? Can Spec Pub Fish Aquat Sci 120: 101–118. [Google Scholar]
  • MacCall AD. 2009. Depletion-corrected average catch: a simple formula for estimating sustainable yields in data-poor situations. ICES J Mar Sci 66: 2267–2271. [CrossRef] [Google Scholar]
  • Marshall BE, Mkumbo OC. 2011. The fisheries of Lake Victoria: Past present and future. Nature and Fauna 26: 8–13. [Google Scholar]
  • Martell SJD, Walters CJ, Sumaila UR. 2008. Industry-funded fishing license reduction good for both profits and conservation. Fish Fish 9: 1–12. [CrossRef] [Google Scholar]
  • Mildenberger TK, Taylor MH, Wolff M. 2017. TropFishR: An R package for fisheries analysis with length-frequency data. Meth Ecol Evol 8: 1520–1527. [CrossRef] [Google Scholar]
  • Munubi RN, Nyakibinda JN. 2020. Assessment of body size and catch per unit effort of Nile perch (Lates Niloticus) caught using different fishing gears at Magu district in Lake Victoria, Tanzania. Afr J Biol Sci 2: 73–83. [Google Scholar]
  • Munyandorero J. 2002. The Lake Tanganyika clupeid and latid fishery system: indicators and problems inherent in assessments and management. Afr Stud Monogr 23: 117–145. [Google Scholar]
  • Munyandorero J. 2012. A recruitment-mortality model in the precautionary management toolkit of African tropical inland, single-species fisheries. Fish Res 127-128: 26–33. [CrossRef] [Google Scholar]
  • Munyandorero J. 2015. Composite per-recruits: Alternative metrics for deriving biological reference points. Reg Stud Mar Sci 2: 35–55. [Google Scholar]
  • Munyandorero J. 2018. Embracing uncertainty, continual spawning, estimation of the stock-recruit steepness, and size-limit designs with length-based per-recruit analyses for African tropical fisheries. Fish Res 199: 137–157. [CrossRef] [Google Scholar]
  • Munyandorero J. 2020. Inferring prior distributions of recruitment compensation metrics from life-history parameters and allometries. Can J Fish Aquat Sci 77: 295–313. [CrossRef] [Google Scholar]
  • Munyandorero J. 2022. Analyses of the composite yield per recruit model CYPR14: Input parameters, R scripts, and outputs for the application species. SEANOE. https://doi.org/10.17882/90241. [Google Scholar]
  • Njiru M, Kazungu J, Ngugi CC, Gichuki J, Muhoozi L. 2008. An overview of the current status of Lake Victoria fishery: Opportunities, challenges and management strategies. Lakes Reserv Res Manage 13: 1–12. [CrossRef] [Google Scholar]
  • Njiru M, Getabu AM, Taabu E, Mlaponi L, Muhoozi L, Mkumbo OC. 2009. Managing Nile perch using slot size: is it possible? Afr J Trop Hydrobiol Fish 12: 9–14. [Google Scholar]
  • Pauly D. 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. J CIEM Mer 39: 175–192. [Google Scholar]
  • Pauly D. 1983. Length-converted catch curves: a powerful tool for fisheries research in the tropics (part I). Fishbyte 1: 9–13. [Google Scholar]
  • Pauly D, Soriano ML. 1986. Some practical extensions to the Beverton and Holt's relative yield per recruit model. In: Maclean JL, Dizon LB, Hosillo LV (Eds.), The first Asian fisheries forum, Asian Fisheries Society, Manila, Philippines pp. 491–496. [Google Scholar]
  • Quinn II JT, Deriso RB. 1999. Quantitative Fish Dynamics. Oxford, Oxford University Press. [Google Scholar]
  • R Core Team. 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/. [Google Scholar]
  • Rivard D, Maguire J-J. 1993. Reference points for fisheries management: the eastern Canadian experience. Can Spec Pub Fish Aquat Sci 120: 31–57. [Google Scholar]
  • Sarvala J, Langenberg VT, Salonen K, Chitamwebwa D, Coulter GW, Huttula T, Kanyaru R, Kotilainen P, Makasa L, Mulimbwa N, Mölsä H. 2006. Fish Catches from Lake Tanganyika mainly reflect changes in fishery practices, not climate. Verh int Ver Limnol 29: 1182–1188. [Google Scholar]
  • Shepherd JG. 1982. A versatile new stock-recruitment relationship for fisheries, and the construction of sustainable yield curves. ICES J Mar Sci 40: 67–75. [CrossRef] [Google Scholar]
  • Schmalz PJ, Luehring M, Rose JD, Hoenig JM, Treml MK. 2016. Visualizing trade-offs between yield and spawners per recruit as an aid to decision making. N Am J Fish Manag 36: 1–10. [CrossRef] [Google Scholar]
  • Taylor CC. 1958. Cod growth and temperature. ICES J Mar Sci 23: 366–370. [CrossRef] [Google Scholar]
  • Then AY, Hoenig JM, Hall NG, Hewitt DA. 2015. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES J Mar Sci 72: 82–92. [Google Scholar]
  • Walters CJ. 2011. The continuous time Schnute-Deriso delay-difference model for age-structured population dynamics. Available at https://studylib.net/doc/7616513/the-continuous-time-schnute-deriso-delay. [Google Scholar]
  • Walters CJ. 2020. The continuous time Schnute-Deriso delay-difference model for age-structured population dynamics, with example application to the Peru anchoveta stock. the Institute for the Oceans and Fisheries, University of British Columbia. Working Paper number 2020-04. Available at https://fisheries.sites.olt.ubc.ca/files/2020/06/1Continuous-time-Schnute-Deriso-model-Final.pdf. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.