Open Access
Issue
Aquat. Living Resour.
Volume 35, 2022
Article Number 1
Number of page(s) 16
DOI https://doi.org/10.1051/alr/2022001
Published online 24 February 2022
  • Barange M, Bahri T, Beveridge MCM, Cochrane KL, Funge-Smith S, Poulain F. 2018. Impacts of climate change on fisheries and aquaculture Synthesis of current knowledge, adaptation and mitigation options. FAO FISHERIES AND AQUACULTURE TECHNICAL PAPER 627. [Google Scholar]
  • Bayne BL, Newell RC. 1983. Physiological energetic of marine molluscs. In: K.M. Wilbur & A.S.M. Saleuddin, editors. The Mollusca, vol. 4; physiology, part 1. London: Academic Press, pp. 407–515. [Google Scholar]
  • Bayne BL, Hawkins AJS, Navarro E. 1987. Feeding and digestion by the mussel Mytilus edulis L. (Bivalvia: Mollusca) in mixtures of silt and algal cells at low concentrations. J Exp Mar Biol Ecol 111: 1–22. [CrossRef] [Google Scholar]
  • Beaudry A, Fortier M, Masson S, Auffret M, Brousseau P, Fournier M. 2016. Effect of temperature on immunocompetence of the blue mussel (Mytilus edulis). J Xenobiot 10.4081/xeno.2016.5889. [PubMed] [Google Scholar]
  • Bechmann RK, Taban IC, Westerlund S, et al. 2011. Effects of Ocean Acidification on Early Life Stages of Shrimp (Pandalus borealis) and Mussel (Mytilus edulis). J Toxicol Environ Health A 10.1080/15287394.2011.550460. [PubMed] [Google Scholar]
  • Berge JA, Bjerkeng B, Pettersen O, Schaanning MT, Oxnevad S. 2006. Effects of increased sea water concentrations of CO2 on growth of the bivalve Mytilus edulis L. Chemosphere 10.1016/j.chemosphere.2005.04.111. [PubMed] [Google Scholar]
  • Blanco Garcia A, Kamermans P. 2015. Optimization of blue mussel (Mytilus edulis) seed culture using recirculation aquaculture systems. Aquac Res 46: 977–986. [CrossRef] [Google Scholar]
  • Brenko MH, Calabrese A. 1969. Combined effects of salinity and temperature on larvae of mussel Mytilus edulis. Mar Biol 4: 224–226. [CrossRef] [Google Scholar]
  • Buxton CD, Newell RC, Field JG. 1981. Response-surface analysis of the combined effects of exposure and acclimation temperatures on filtration, oxygen consumption and scope for growth in the Oyster Ostrea edulis. Mar Ecol Prog Ser 6: 73–82. [CrossRef] [Google Scholar]
  • Capelle JJ, Blanco A, Kamermans P, Engelsma M, Jansen H. 2021. Observations on recent mass mortality events of marine mussels in the Oosterschelde, the Netherlands. Aquac Int. https://doi.org/10.1007/s10499-021-00713-6. [Google Scholar]
  • Castillo-Durán A, Chávez-Villalba J, Arreola-Lizárraga A, Barraza-Guardado R. 2010. Comparative growth, condition, and survival of juvenile Crassostrea gigas and C. corteziensis oysters cultivated in summer and winter. Ciencias Mar. 36: 29–39. [Google Scholar]
  • Catalán IA, Auch D, Kamermans P, et al. 2019. Critically examining the knowledge base required to mechanistically project climate impacts: a case study of Europe's fish and shellfish. Fish Fish 1–17 DOI: 10.1111/faf.12359. [Google Scholar]
  • Child A, Laing I. 1998. Comparative low temperature tolerance of small juvenile European, Ostrea edulis L., and Pacific oysters, Crassostrea gigas Thunberg. Aquac Res 29: 103–113. [CrossRef] [Google Scholar]
  • Costello C, Cao L, Gelcich S, et al. 2020. The future of food from the sea. Nature 588: 95–100. [CrossRef] [PubMed] [Google Scholar]
  • Cubillo AM, Ferreira JG, Lencart Silva J, et al. 2021. Direct effects of climate change on productivity of European aquaculture. Aquac Int https://doi.org/10.1007/s10499-021-00694-6. [Google Scholar]
  • Cranford PJ, Ward E, Shumway SE. 2011. Bivalve filter feeding: variability and limits of the aquaculture biofilter. In: Shumway SE. (Ed.), Shellfish Aquaculture and the Environment. Wiley-Blackwell, pp. 81– 124. [CrossRef] [Google Scholar]
  • Davis HC, Ansell AD. 1962. Survival and growth of larvae of european oyster, o edulis, at lowered salinities. Biol Bull. 10.2307/1539319. [Google Scholar]
  • Davis HC, Calabrese A. 1969. Survival and growth of larvae of European oyster (Ostrea edulis L) at different temperatures. Biol Bull. 10.2307/1539813. [Google Scholar]
  • Dineshram R, Wong KKW, Xiao S, Yu Z, Qian PY, Thiyagarajan V. 2012. Analysis of Pacific oyster larval proteome and its response to high-CO2. Mar Pollut Bull 64: 2160–2167. [CrossRef] [PubMed] [Google Scholar]
  • Eymann C, Götze S, Bock C, et al. 2020. Thermal performance of the European flat oyster, Ostrea edulis (Linnaeus, 1758)—explaining ecological findings under climate change. Mar Biol 167: 1–15. [CrossRef] [Google Scholar]
  • Ferreira JG, Taylor NGH, Cubillo A, et al. 2021. An integrated model for aquaculture production, pathogen interaction, and environmental effects. Aquaculture 536: 736438 [CrossRef] [Google Scholar]
  • Fitzer SC, Vittert L, Bowman A, Kamenos NA, Phoenix VR, Cusack M. 2015. Ocean acidification and temperature increase impact mussel shell shape and thickness: Problematic for protection? Ecol Evol 5: 4875–4884. [CrossRef] [PubMed] [Google Scholar]
  • Fokina NN, Lysenko LA, Sukhovskaya IV, Vdovichenko EA, Borvinskaya EV, Kantserova NP, Krupnova MY, Ruokolainen TR, Smirnov LP, Vysotskaya RU, Bakhmet IN, Nemova NN. 2015. Biochemical response of blue mussels Mytilus edulis L. from the white sea to rapid changes in ambient temperature. J Evolut Biochem Physiol 10.1134/S0022093015050038. [Google Scholar]
  • Foster-Smith RL. 1975. The effect of concentration of suspension on the filtration rates and pseudofaecal production for Mytilus edulis L., Cerastoderma edule (L.) and Venerupis pullastra (Montagu). J Exp Mar Biol Ecol 17: 1–22. [CrossRef] [Google Scholar]
  • Galley TH, Batista FM, Braithwaite R, King J, Beaumont AR. 2010. Optimisation of larval culture of the mussel Mytilus edulis (L.). Aquac Int 18: 315–325. [CrossRef] [Google Scholar]
  • Gazeau F, Gattuso JP, Dawber C, et al. 2010. Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences 7: 2051–2060. [CrossRef] [Google Scholar]
  • Gestoso I, Arenas F, Olabarria C. 2016. Ecological interactions modulate responses of two intertidal mussel species to changes in temperature and pH. J Exp Mar Biol Ecol 474: 116–125. [CrossRef] [Google Scholar]
  • Harney E, Artigaud S, Le Souchu P, et al. 2016. Non-additive effects of ocean acidification in combination with warming on the larval proteome of the Pacific oyster, Crassostrea gigas. J Proteom 135: 151–161. [CrossRef] [Google Scholar]
  • Haure J, Penisson C, Bougrier S, Baud JP. 1998. Influence of temperature on clearance and oxygen consumption rates of the flat oyster Ostrea edulis: determination of allometric coefficients. Aquaculture 169: 211–224. [CrossRef] [Google Scholar]
  • Hiebenthal C, Philipp EER, Eisenhauer A, Wahl M. 2013. Effects of seawater pCO(2) and temperature on shell growth, shell stability, condition and cellular stress of Western Baltic Sea Mytilus edulis (L.) and Arctica islandica (L.). Mar Biol 10.1007/s00227-012-2080-9. [Google Scholar]
  • Honkoop PJC, Beukema JJ. 1997. Loss of body mass in winter in three intertidal bivalve species: an experimental and observational study of the interacting effects between water temperature, feeding time and feeding behavior. J Exp Mar Biol Ecol 10.1016/S0022-0981(96)02757-8. [Google Scholar]
  • Huning A, Melzner F, Thomsen J, et al. 2013. Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: implications for shell formation and energy metabolism. Mar Biol 10.1007/s00227-012-1930-9. [Google Scholar]
  • Jansen JM, Hummel H, Bonga SW. 2009. The respiratory capacity of marine mussels (Mytilus galloprovincialis) in relation to the high temperature threshold. Compar Biochem Physiol A 153: 399–402. [CrossRef] [Google Scholar]
  • Jones SJ, Mieszkowska N, Wethey DS. 2009. Linking thermal tolerances and biogeography: Mytilus edulis (L.) at its southern limit on the east coast of the United States. Biol Bull 217: 73–85. [CrossRef] [PubMed] [Google Scholar]
  • Jeffrey JD, Hannan D, Hasler CT, Suski CD. 2018. Hot and bothered: effects of elevated PCO2 and temperature on juvenile freshwater mussels. Am J Physiol 315:‏ R115– R127. [Google Scholar]
  • Joyce PWS, Kregting LT, Dick JTA. 2019. Relative impacts of the invasive Pacific oyster, Crassostrea gigas, over the native blue mussel, Mytilus edulis, are mediated by flow velocity and food concentration. NeoBiota 45: 19–37. [CrossRef] [Google Scholar]
  • Kheder RB, Moal J, Robert R. 2010. Impact of temperature on larval development and evolution of physiological indices in Crassostrea gigas. Aquaculture 309: 286–289. [CrossRef] [Google Scholar]
  • Kurihara H, Kato S, Ishimatsu A. 2007. Effects of increased seawater pCO(2) on early development of the oyster Crassostrea gigas. Aquat Biol 10.3354/ab00009. [Google Scholar]
  • Kurihara H, Asai T, Kato S, Ishimatsu A. 2009 Effects of elevated pCO(2) on early development in the mussel Mytilus galloprovincialis. Aquat Biol 10.3354/ab00109. [Google Scholar]
  • Landes A, Dolmer P, Poulsen LK, Petersen JK, Vismann B. 2015. Growth and respiration in blue mussels (Mytilus spp.) from different salinity regimes. J Shellfish Res 34: 373–382. [CrossRef] [Google Scholar]
  • Lauzon-Guay JS, Barbeau MA, Watmough J, Hamilton DJ. 2006. Model for growth and survival of mussels Mytilus edulis reared in Prince Edward Island, Canada. Mar Ecol Prog Ser 323: 171–183. [CrossRef] [Google Scholar]
  • LeBlanc N, Landry T, Stryhn H, Tremblay R, McNiven M, Davidson J. 2005. The effect of high air and water temperature on juvenile Mytilus edulis in Prince Edward Island, Canada. Aquaculture 10.1016/j.aquaculture.2004.09.035. [Google Scholar]
  • Loo LO. 1992. Filtration, assimilation, respiration and growth of Mytilus edulis-l at low-temperatures ophelia. [Google Scholar]
  • Lowe DM, Moore MN. 1979. The cytology and occurrence of granulocytomas in mussels. Mar Pollut Bull 10: 137–140. [CrossRef] [Google Scholar]
  • Maar M, Saurel C, Landes A, Dolmer P, Petersen JK. 2015. Growth potential of blue mussels (M. edulis) exposed to different salinities evaluated by a Dynamic Energy Budget model. J Mar Syst 148: 48–55. [CrossRef] [Google Scholar]
  • Matozzo V, Chinellato A, Munari M, Finos L, Bressan M, Marin MG. 2012. First evidence of immunomodulation in bivalves under seawater acidification and increased temperature. PLoS ONE 7: e 33820. [Google Scholar]
  • Mesas A, Tarifeño E. 2015. Upper lethal temperatures for the mussel Mytilus galloprovincialis (Lamarck, 1819), in central coast of Chile. Lat Am J Aquat Res 43: 473–483. [Google Scholar]
  • Møhlenberg F, Riisgård HU. 1979. Filtration rate, using a new indirect technique, in thirteen species of suspension-feeding bivalves. Mar Biol 54: 143–147. [CrossRef] [Google Scholar]
  • Palmer SCJ, Barille L, Gernez P. 2021. Pacific oyster (Crassostrea gigas) growth modelling and indicators for offshore aquaculture in Europe under climate change uncertainty. Aquaculture 532. [Google Scholar]
  • Parodi A, Leip A, De Boer IJM, et al. 2018. The potential of future foods for sustainable and healthy diets. Nat Sustain 1: 782–789 [CrossRef] [Google Scholar]
  • Pascoe PL, Parry HE, Hawkins AJS. 2009. Observations on the measurement and interpretation of clearance rate variations in suspension-feeding bivalve shellfish. Aquat Biol 6: 181–190. [CrossRef] [Google Scholar]
  • Petton B, Pernet F, Robert R, Boudry P. 2013. Temperature influence on pathogen transmission and subsequent mortalities in juvenile Pacific oysters Crassostrea gigas. Aquac Environ Inter. 10.3354/aei00070. [Google Scholar]
  • Prado P, Roque A, Perez J, et al. 2016. Warming and acidification-mediated resilience to bacterial infection determine mortality of early Ostrea edulis life stages. Mar Ecol Progr Ser. 10.3354/meps11618. [Google Scholar]
  • Range P, Chı́charo MA, Ben-Hamadou R, et al. 2014. Impacts of CO2-induced seawater acidification on coastal Mediterranean bivalves and interactions with other climatic stressors. Regl Environ Change 10.1007/s10113-013-0478-7. [Google Scholar]
  • Rajagopal S, van der Velde G, van der Gaag M, Jenner HA. 2005. Factors influencing the upper temperature tolerances of three mussel species in a brackish water canal: Size, season and laboratory protocols. Biofouling 10.1080/08927010500133584. [PubMed] [Google Scholar]
  • Rayssac N, Pernet F, Lacasse O, Tremblay R. 2010. Temperature effect on survival, growth, and triacylglycerol content during the early ontogeny of Mytilus edulis and M. trossulus. Mar Ecol Prog Ser 10.3354/meps08774. [Google Scholar]
  • Ren JS, Ross AH, Schiel DR. 2000. Functional descriptions of feeding and energetics of the Pacific oyster Crassostrea gigas in New Zealand. Mar Ecol Prog Ser 208: 119–130. [CrossRef] [Google Scholar]
  • Rico-Villa B, Pouvreau S, Robert R. 2009. Influence of food density and temperature on ingestion, growth and settlement of Pacific oyster larvae, Crassostrea gigas. Aquaculture. 10.1016/j.aquaculture.2008.10.054. [PubMed] [Google Scholar]
  • Riisgård HU. 2001 On measurement of filtration rates in bivalves—the stony road to reliable data: review and interpretation. Mar Ecol Prog Ser 17. [Google Scholar]
  • Riisgård HU, Larsen PS. 2007. Viscosity of seawater controls beat frequency of water-pumping cilia and filtration rate of mussels Mytilus edulis. Mar Ecol Progr Ser 10.3354/meps06930. [Google Scholar]
  • Riisgård HU, Egede PP, Saavedra IB. 2011. Feeding behaviour of mussels, Mytilus edulis: New observations, with a mini-review of current knowledge. J Mar Biol Article ID 312459. [Google Scholar]
  • Riisgård HU, Larsen PS, Turja R, Lundgreen K. 2014. Dwarfism of blue mussels in the low saline Baltic Sea − growth to the lower salinity limit. Mar Ecol Progr Ser 10.3354/meps11011. [Google Scholar]
  • Rodstrom EM, Jonsson PR. 2000. Survival and feeding activity of oyster spat (Ostrea edulis L) as a function of temperature and salinity with implications for culture policies on the Swedish west coast. J Shellfish Res 799–808. [Google Scholar]
  • Sanchez Lazo C, Pita IM. 2012. Effect of temperature on survival, growth and development of Mytilus galloprovincialis larvae. Aquac Res 43: 1127–1133. [CrossRef] [Google Scholar]
  • Schneider KR, Van Thiel LE, Helmuth B. 2010. Interactive effects of food availability and aerial body temperature on the survival of two intertidal Mytilus species. J Thermal Biol 35: 161–166. [CrossRef] [Google Scholar]
  • Seed R. 1976. Ecology. In Bayne BL. (ed.), Marine Mussels Their Ecology and Physiology. Cambridge: Cambridge University Press, pp. 13–65. [Google Scholar]
  • Smaal AC. 1997. Food Supply and Demand of Bivalve Suspension Feeders in a Tidal System (PhD thesis). University of Groningen. [Google Scholar]
  • Stechele B, Maar M, Wijsman J, et al. Comparing life history traits and tolerance to changing environments of two oyster species (Ostrea edulis and Crassostrea gigas) through. Dyn Energy Budget. [Google Scholar]
  • Tang BJ, Riisgård HU. 2018. Relationship between oxygen concentration, respiration and filtration rate in blue mussel Mytilus edulis. J Oceanol Limnol 36: 395–404. [CrossRef] [Google Scholar]
  • Thomsen J, Casties I, Pansch C, Kortzinger A, Melzner F. 2013. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Glob Change Biol 10.1111/gcb.12109. [Google Scholar]
  • Timmins-Schiffman E, O'Donnell MJ, Friedman CS, Roberts SB. 2013. Elevated pCO(2) causes developmental delay in early larval Pacific oysters, Crassostrea gigas. Mar Biol. 10.1007/s00227-012-2055-x. [Google Scholar]
  • Tomanek L, Zuzow MJ, Hitt L, Serafini L, Valenzuela JJ. 2012. Proteomics of hyposaline stress in blue mussel congeners (genus Mytilus): implications for biogeographic range limits in response to climate change. J Exp Biol 10.1242/jeb.076448. [CrossRef] [Google Scholar]
  • Tremblay R, Landry T, Leblanc N, Pernet F, Barkhouse C, Sevigny JM. 2011. Physiological and biochemical indicators of mussel seed quality in relation to temperatures. Aquat Liv Res 10.1051/alr/2011113. [Google Scholar]
  • UN General Assembly, Transforming our world : the2030 Agenda for Sustainable Development, 21 October 2015, A/RES/70/1, available at: https://www.refworld.org/docid/57b6e3e44.html [accessed 3 September 2021] [Google Scholar]
  • Ventura A, Schulz S, Dupont S. 2016. Maintained larval growth in mussel larvae exposed to acidified under-saturated seawater. Sci Rep 10.1038/srep23728. [PubMed] [Google Scholar]
  • Waldeck P, Larsson K. 2013. Effects of winter water temperature on mass loss in Baltic blue mussels: Implications for foraging sea ducks. J Exp Mar Biol Ecol 10.1016/j.jembe.2013.03.007. [Google Scholar]
  • Widdows J. 1985. Physiological procedures. In: Bayne BL, Brown DA, Burns K, Dixon DR and 6 others (eds) The effects of stress and pollution on marine animals. New York: Praeger, p 161–178 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.