Free Access
Issue
Aquat. Living Resour.
Volume 34, 2021
Article Number 15
Number of page(s) 13
DOI https://doi.org/10.1051/alr/2021015
Published online 10 June 2021
  • Ackleson SG, Klemas V. 1987. Remote sensing of submerged aquatic vegetation in lower Chesapeake Bay: a comparison of Landsat MSS to TM imagery. Remote Sens Environ 22: 235–248. [Google Scholar]
  • Andréfouët S, Kramer P, Torres-Pulliza D, Joyce KE, Hochberg EJ, Garza-Pérez R, Mumby PJ, Riegl B, Yamano H, White WH, Zubia M. 2003. Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sens Environ 88: 128–143. [Google Scholar]
  • Andréfouët S, Zubia M, Payri C. 2004. Mapping and biomass estimation of the invasive brown algae Turbinaria ornata (Turner) J. Agardh and Sargassum mangarevense (Grunow) Setchell on heterogeneous Tahitian coral reefs using 4-meter resolution IKONOS satellite data. Coral Reefs 23: 26–38. [Google Scholar]
  • Andréfouët S, Payri C, Van Wynsberge S, Lauret O, Alefaio S, Preston G, Yamano H, Baudel S. 2017. The timing and the scale of the proliferation of Sargassum polycystum in Funafuti Atoll, Tuvalu. J Appl Phycol 29: 3097–3108. [Google Scholar]
  • Andréfouët S, Subky B, Gaspar P, Farhan AR. 2018. INDESO project: results from application of remote sensing and numerical models for the monitoring and management of Indonesia coasts and seas. Mar Pollut Bull 131: 1–6. [Google Scholar]
  • Andréfouët S, Dewantama IMI, Ampou EE. 2021. Seaweed farming collapse and fast changing socio-ecosystems exacerbated by tourism and natural hazards in Indonesia: a view from space and from the households of Nusa Lembongan island. Ocean Coast Manage 207: 105586. [Google Scholar]
  • Anggadiredja JT, Zatnika A, Purwoto H, Istini S. Seaweed (Rumput Laut). Penebar Swadaya, Jakarta, 2006 (in Indonesian). [Google Scholar]
  • Anonymous. Movement Seaweed Farmer in Nusa Lembongan. Wisnu Foundation, 2019. Retrieved March 2, 2020 from http://www.wisnu.or.id/2019/12/‌11/movement-seaweed-farmer-in-nusa-lembongan [Google Scholar]
  • Armiyanti NPNN, Sutarjo, Surata IK. 2013. Productivity of seaweed farming in coastal waters of Nusa Penida, Klungkung Regency (Tingkat Produktivitas Budidaya Rumput Laut Pada Perairan Pantai Di Kecamatan Nusa Penida Kabupaten Klungkung). J Pendidik Geogr Undiksha 3 (in Indonesian). [Google Scholar]
  • Barillé L, Robin M, Harin N, Bargain A, Launeau P. 2010. Increase in seagrass distribution at Bourgneuf Bay (France) detected by spatial remote sensing. Aquat Bot 92: 185–194. [Google Scholar]
  • Beil A, Daum R, Harig R, Matz G. Remote sensing of atmospheric pollution by passive FTIR spectrometry, in Spectroscopic Atmospheric Environmental Monitoring Techniques, Vol. 3493. International Society for Optics and Photonics, 1998, pp. 32–44. [Google Scholar]
  • Benfield SL, Guzman HM, Mair JM, Young JAT. 2007. Mapping the distribution of coral reefs and associated sublittoral habitats in Pacific Panama: a comparison of optical satellite sensors and classification methodologies. Int J Remote Sens 28: 5047–5070. [Google Scholar]
  • Castillo-Santiago MA, Ricker M, de Jong BH. 2010. Estimation of tropical forest structure from SPOT-5 satellite images. Int J Remote Sens 31: 2767–2782. [Google Scholar]
  • Chavez PS. 1988. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens Environ 24: 459–479. [Google Scholar]
  • Collings S, Botha EJ, Anstee J, Campbell N. 2018. Depth from satellite images: depth retrieval using a stereo and radiative transfer-based hybrid method. Remote Sens 10: 1247. [Google Scholar]
  • Congalton RG. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37: 35–46. [Google Scholar]
  • Congalton RG, Green K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed., CRC Press/Taylor and Francis Group, 2008. [Google Scholar]
  • Couto P. 2003. Assessing the accuracy of spatial simulation models. Ecol Modell 167: 181–198. [Google Scholar]
  • Cross MD, Scambos TA, Pacifici F, Marshall WE. 2018. Validating the use of metre-scale multi-spectral satellite image data for identifying tropical forest tree species. Int J Remote Sens 39: 3723–3752. [Google Scholar]
  • Davis M. 2021. The year Bali tourism stopped. ABC News. Retrieved March 30, 2020 from https://www.abc.net.au/news/2021-03-09/bali-return-of-seaweed-farming-ceningan-lembongan-penida-covid/13202170 [Google Scholar]
  • De Gruijter J. Spatial sampling schemes for remote sensing, in Spatial Statistics for Remote Sensing, Springer, Dordrecht, 1999, pp. 211–242. [Google Scholar]
  • FAO. The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, Rome, 2014. [Google Scholar]
  • FAO. The State of World Fisheries and Aquaculture − Meeting the sustainable development goals. Food and Agriculture Organization of the United Nations, Rome, 2018. [Google Scholar]
  • Flener C, Lotsari E, Alho P, Käyhkö J. 2010. Comparison of empirical and theoretical remote sensing-based bathymetry models in river environments. River Res Appl 28, 118–133. [Google Scholar]
  • Foody GM, Atkinson PM. Uncertainty in remote sensing and GIS. John Wiley and Sons, 2002. [Google Scholar]
  • Foody GM. 2008. Harshness in image classification accuracy assessment. Int J Remote Sens 29: 3137–3158. [Google Scholar]
  • Gitelson AA, Dall'Olmo G, Moses W, Rundquist DC, Barrow T, Fisher TR, Gurlin D, Holz J. 2008. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens Environ 112: 3582–3593. [Google Scholar]
  • Green E, Mumby P, Edwards A, Clark C. Remote Sensing: Handbook for Tropical Coastal Management. United Nations Educational, Scientific and Cultural Organization (UNESCO), 2000. [Google Scholar]
  • Hamylton S. 2011. An evaluation of waveband pairs for water column correction using band ratio methods for seabed mapping in the Seychelles. Int J Remote Sens 32: 9185–9195. [Google Scholar]
  • Hoang TC, O'Leary MJ, Fotedar RK. 2015. Remote-sensed mapping of Sargassum spp. Distribution around Rottnest Island, Western Australia, using high-spatial resolution WorldView-2 satellite data. J Coast Res 32: 1310–1321. [Google Scholar]
  • Holmes KW, Van Niel K, Kendrick G, Baxter K. Designs for remote sampling: review, discussion, examples of sampling methods and layout of scaling issues. Technical report, Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, Australia, 2006. [Google Scholar]
  • Huesemann MH, Van Wagenen J, Miller T, Chavis A, Hobbs S, Crowe B. 2013. A screening model to predict microalgae biomass growth in photobioreactors and raceway ponds. Biotechnol Bioeng 110: 1583–1594. [Google Scholar]
  • Jerlov NG. 1977. Classification of seawater in terms of quanta irradiance. ICES J Mar Sci 37: 281–287. [Google Scholar]
  • Kanno A, Tanaka Y. 2012. Modified Lyzenga's method for estimating generalized coefficients of satellite-based predictor of shallow water depth. IEEE Geosci Remote Sens Lett 9: 715–719. [Google Scholar]
  • Keohane A. A Look Into the Carrageenan Industry: How Tourism, Markets and Demand Affect the Seaweed Farmers of Bali Indonesia. Center for Marine Biodiversity and Conservation, San Diego, 2016. [Google Scholar]
  • Knudby A, Nordlund L. 2011. Remote sensing of seagrasses in a patchy multi-species environment. Int J Remote Sens 32: 2227–2244. [Google Scholar]
  • Louchard EM, Reid RP, Stephens FC, Davis CO, Leathers RA, Valerie DT. 2003. Optical remote sensing of benthic habitats and bathymetry in coastal environments at Lee Stocking Island, Bahamas: a comparative spectral classification approach. Limnol Oceanogr 48: 511–521. [Google Scholar]
  • Lyzenga DR. 1981. Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data. Int J Remote Sens 2: 71–82. [Google Scholar]
  • Ma Z, Redmond RL. 1995. Tau coefficients for accuracy assessment of classification of remote sensing data. Photogramm Eng Remote Sens 61: 435–439. [Google Scholar]
  • Manessa MDM, Kanno A, Sekine M, Haidar M, Yamamoto K, Imai T, Higuchi T. 2016a. Satellite-derived bathymetry using Random Forest Algorithm and WorldView-2 imagery. Geoplanning: J Geomat Plan 3: 117–126. [Google Scholar]
  • Manessa MDM, Haidar M, Budhiman S, Winarso G, Kanno A, Sagawa T, Sekine M. 2016b. Evaluating the performance of Lyzenga's water column correction in case-1 coral reef water using a simulated WorldView-2 imagery. IOP Conf Ser: Earth Environ Sci 47: 012018. [Google Scholar]
  • Manuputty A, Gaol JL, Agus SB, Nurjaya IW. The utilization of depth invariant index and principle component analysis for mapping seagrass ecosystem of Kotok Island and Karang Bongkok, Indonesia, in IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2017. [Google Scholar]
  • McKenzie LJ, Finkbeiner MA, Kirkman H. Methods for mapping seagrass distribution. Global Seagrass Research Methods. Elsevier B.V., 2001, pp. 101–121. [Google Scholar]
  • Miecznik G, Grabowska D. WorldView-2 bathymetric capabilities, in Proceeding SPIE 8390: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, 2012. [Google Scholar]
  • Ministry of Marine Affairs and Fisheries (MMAF). Indonesian Aquaculture Statistics 2014. Ministry of Marine Affairs and Fisheries, Republic of Indonesia, Jakarta, 2015. [Google Scholar]
  • Ministry of Marine Affairs and Fisheries (MMAF). Yearly Report of 2018. Ministry of Marine Affairs and Fisheries, Jakarta, 2019. [Google Scholar]
  • Mulyati H, Geldermann J. 2017. Managing risks in the Indonesian seaweed supply chain. Clean Technol Environ Policy 19: 175–189. [Google Scholar]
  • Mumby PJ, Clark CD, Green EP, Edwards AJ. 1998. Benefits of water column correction and contextual editing for mapping coral reefs. Int J Remote Sens 19: 203–210. [Google Scholar]
  • Mumby PJ, Edwards AJ. 2002. Mapping marine environments with IKONOS imagery: enhanced spatial resolution can deliver greater thematic accuracy. Remote Sens Environ 82: 248–257. [Google Scholar]
  • Næsset E. 1996. Conditional tau coefficient for assessment of producer's accuracy of classified remotely sensed data. ISPRS J Photogramm Remote Sens 51: 91–98. [Google Scholar]
  • O'Neill NT, Kalinauskas AR, Borstad GA, Edel H, Gower JF, Vander Piepen H. Imaging spectrometry for water applications, in Proceeding SPIE 0834, Imaging Spectroscopy II, 1987, pp. 129– 136. [Google Scholar]
  • Olofsson P, Foody GM, Herold M, Stehman SV, Woodcock CE, Wulder MA. 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sens Environ 148: 42–57. [Google Scholar]
  • Perryman SE, Lapong I, Mustafa A, Sabang R, Rimmer MA. 2017. Potential of metal contamination to affect the food safety of seaweed (Caulerpa spp.) cultured in coastal ponds in Sulawesi, Indonesia. Aquac Rep 5: 27–33. [Google Scholar]
  • Pratama I. Preliminary study of the use of remote sensing in the identification and mapping of seaweed farming (Kajian Awal Penerapan Teknologi Penginderaan Jauh Dalam Identifikasi dan Pemetaan Rumput Laut Untuk Perencanaan Dan Pengembangan Kawasan Budidaya Rumput Laut). Pemanfaatan Teknologi Untuk Kesejahteraan Masyarakat Pesisir. Pusat Riset Teknologi Kelautan, Jakarta, 2010 (in Indonesian). [Google Scholar]
  • Prawira MO, Riyantini I, Kurniawati N. 2013. The characteristic dynamics of seagrass bioecology in Nusa Lembongan, Bali Province (Dinamika Karakteristik Bioekologi Lamun Di Nusa Lembongan Provinsi Bali). J Perikan Kelaut 4: 393–402. (in Indonesian). [Google Scholar]
  • Richards JA. Remote Sensing Digital Image Analysis, An Introduction, Vol. XIX, 5th ed., Springer-Verlag, Berlin Heidelberg, 2013, p. 494. [Google Scholar]
  • Rioja-Nieto R, Barrera-Falcón E, Hinojosa-Arango G, Riosmena-Rodríguez R. 2013. Benthic habitat β-diversity modeling and landscape metrics for the selection of priority conservation areas using a systematic approach: Magdalena Bay, Mexico, as a case study. Ocean Coast Manage 82: 95–103. [Google Scholar]
  • Sagawa T, Boisnier E, Komatsu T, Mustapha KB, Hattour A, Kosaka N, Miyazaki S. 2010. Using bottom surface reflectance to map coastal marine areas: a new application method for Lyzenga's model. Int J Remote Sens 31: 3051–3064. [Google Scholar]
  • Sarinah S, Djatna T. 2015. Assessment of risk mitigation plan by seaweed industry on seaweed raw material shortage: a study case in South Sulawesi, Indonesia (Analisis strategi penanganan risiko kekurangan pasokan pada industri pengolahan rumput laut: kasus di Sulawesi Selatan). Agritech 35: 223–233. (in Indonesian with English abstract). [Google Scholar]
  • Schalles JF. Optical remote sensing techniques to estimate phytoplankton chlorophyll-a concentrations in coastal, in Remote sensing of aquatic coastal ecosystem processes. Springer, Dordrecht, 2006, pp. 27–79. [Google Scholar]
  • Sekioka SI, Ishikawa D, Noro T, Ishiguro E. 2008. Fundamental study on estimation of standing seaweed biomass by remote sensing. J Remote Sens Soc Jpn 28: 342–349. [Google Scholar]
  • Sievanen L, Crawford B, Pollnac R, Lowe C. 2005. Weeding through assumptions of livelihood approaches in ICM: seaweed farming in the Philippines and Indonesia. Ocean Coast Manag 48: 297–313. [Google Scholar]
  • Silva TSF, Costa MPF, Melack JM, Novo EMLM. 2008. Remote sensing of aquatic vegetation: theory and applications. Environ Monit Assess 140: 131–145. [Google Scholar]
  • Silva TSF, Costa MPF, Melack JM. 2010. Assessment of two biomass estimation methods for aquatic vegetation growing on the Amazon Floodplain. Aquat Bot 92: 161–167. [Google Scholar]
  • Simms ÉL. Submerged kelp biomass assessment using CASI, in Coastal and Marine Geo-Information Systems, Springer, Dordrecht, 2003, pp. 501–509. [Google Scholar]
  • Setyawidati N, Liabot PO, Perrot T, Radiarta N, Deslandes E, Bourgougnon N, Rossi N, Stiger-Pouvreau V. 2017. In situ variability of carrageenan content and biomass in the cultivated red macroalga Kappaphycus alvarezii with an estimation of its carrageenan stock at the scale of the Malasoro Bay (Indonesia) using satellite image processing. J Appl Phycol 29: 2307–2321. [Google Scholar]
  • Setyawidati N, Kaimuddin AH, Wati IP, Helmi M, Widowati I, Rossi N, Liabot PO, Stiger-Pouvreau V. 2018a. Percentage cover, biomass, distribution, and potential habitat mapping of natural macroalgae, based on high-resolution satellite data and in situ monitoring, at Libukang Island, Malasoro Bay, Indonesia. J Appl Phycol 30: 159–171. [Google Scholar]
  • Setyawidati N, Puspita M, Kaimuddin AH, Widowati I, Deslandes E, Bourgougnon N, Stiger-Pouvreau V. 2018b. Seasonal biomass and alginate stock assessment of three abundant genera of brown macroalgae using multispectral high-resolution satellite remote sensing: a case study at Ekas Bay (Lombok, Indonesia). Mar Pollut Bull 131: 40–48. [Google Scholar]
  • Stekoll MS, Deysher LE, Hess M. 2006. A remote sensing approach to estimating harvestable kelp biomass. J Appl Phycol 18: 323–334. [Google Scholar]
  • Stumpf RP, Holderied K, Sinclair M. 2003. Determination of water depth with high‐resolution satellite imagery over variable bottom types. Limnol Oceanogr 48: 547–556. [Google Scholar]
  • Sulistijo MS. Research of seaweed cultivation in Indonesia (Penelitian Budidaya Rumput Laut (Alga Makro/Seaweed) di Indonesia). Pusat Penelitian Oseanografi Lembaga Ilmu Pengetahuan Indonesia, Jakarta, 2002 (in Indonesian). [Google Scholar]
  • Tassan S. 1996. Modified Lyzenga's method for macroalgae detection in water with non-uniform composition. Int J Remote Sens 17: 1601–1607. [Google Scholar]
  • Tucker CJ, Sellers PJ. 1986. Satellite remote sensing of primary production. Int J Remote Sens 7: 1395–1416. [Google Scholar]
  • Updike T, Comp C. Radiometric use of WorldView-2 imagery. Technical Note, DigitalGlobe, Inc., 2010, pp. 1–17. [Google Scholar]
  • Watkins RL. A Methodology for Classification of Benthic Features using WorldView-2 Imagery. Report prepared for the Ecospatial Information Team, Coral Reef Ecosystem Division, Pacific Islands Fisheries Science Center, Honolulu, HI, 2015, 29 pp, under NOAA contract number WE-133F-15-SE-0518. ftp://ftp.soest.hawaii.edu/pibhmc/website/webdocs/documentation/Classification_of_Benthic_Features_using_WorldView_final.pdf [Google Scholar]
  • Wouthuyzen S, Herandarudewi SM, Komatsu T. 2016. Stock assessment of brown seaweeds (Phaeophyceae) along the Bitung-Bentena Coast, North Sulawesi Province, Indonesia for alginate product using satellite remote sensing. Procedia Environ Sci 33: 553–561. [Google Scholar]
  • Wright EC. The Upshot of Upgrading: Seaweed Farming and Value Chain Development in Indonesia. University of Hawai'i at Manoa, ProQuest Dissertations Publishing, 2017. [Google Scholar]
  • Zamroni A, Yamao M. 2011. Coastal resource management: fishermen-s perceptions of seaweed farming in Indonesia. Int J Nutr Food Eng 5: 856–862. [Google Scholar]
  • Zoffoli ML, Frouin R, Kampel M. 2014. Water column correction for coral reef studies by remote sensing. Sensors 14: 16881–16931. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.