Free Access
Issue
Aquat. Living Resour.
Volume 33, 2020
Article Number 16
Number of page(s) 9
DOI https://doi.org/10.1051/alr/2020017
Published online 13 November 2020
  • Bryan GW, Hummerstone LG. 1973. Brown seaweed as an indicator of heavy metals in estuaries in south-west England. J Marine Biol Assoc UK 53: 705–720. [CrossRef] [Google Scholar]
  • Bryan GW, Langston WJ. 1992. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. J Environment pollution. 76: 89–131. [CrossRef] [Google Scholar]
  • Busetti A, Maggs CA, Gilmore B. 2017. Marine macroalgae and their associated microbiomes as a source of antimicrobial chemical diversity. European Journal of Phycology. 52: 452–465. [Google Scholar]
  • Colangelo EP, Guerinot ML. 2006. Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol. 9: 322–330. [CrossRef] [PubMed] [Google Scholar]
  • Desideri D. 2016. Essential and toxic elements in seaweeds for human consumption. Journal of Toxicology and Environmental Health. 79: 112–122. [CrossRef] [PubMed] [Google Scholar]
  • Domínguez G, Moreda PA, Bermejo BA, Bermejo BP. 2004. Application of ultrasound-assisted acid leaching procedures for major and trace elements determination in edible seaweed by inductively coupled plasma-optical emission spectrometry. Talanta. 66: 937–942. [Google Scholar]
  • Domínguez G, Raquel, Romarís HV, García SC, Moreda PA, Barciela AMC, Bermejo BP. 2010. Evaluation of an in vitro method to estimate trace elements bioavailability in edible seaweeds. Talanta. 82: 1668–1673. [CrossRef] [Google Scholar]
  • Durairatnam M. 1961. Contribution to the study of marine algae of Ceylon. Bull.Fish.Res.Sin.Ceylon. 10: 5–117. [Google Scholar]
  • Dutton JWR, Jefferies DF, Folkard AR, Jones PGW. 1973. Trace metals in the North Sea. Mar pollut bulle. 4: 135–138. [CrossRef] [Google Scholar]
  • Edirisinghe R, Jinadasa K. 2015. A comparative study of cadmium and arsenic levels in seaweeds from Sri Lanka. 13th international conference on the biogeochemistry of trace elements held at Fukoka, Japan on July 2015. [Google Scholar]
  • FAO, 2020: FAO Aquaculture, The state of world fisheries and aquaculture, Overall status of production and trend in growth. http://www.fao.org/3/ca9229en/online/ca9229en.html#chapter-1_1. [Google Scholar]
  • Forsberg AE, Soederlund S, Frank A, Petersson LR, Pedersean M. 1988. Studies on metal content in the brown seaweed, Fucus vesiculosus, from the archipelago of Stockholm. J Environment pollution. 49: 245–263. [CrossRef] [Google Scholar]
  • Gaudry A. 2007. Heavy metals pollution of the Atlantic marine environment by the Moroccan phosphate industry, as observed through their bioaccumulation in Ulva lactuca . Water, Air, & Soil Pollution 178: 267–285. [CrossRef] [Google Scholar]
  • Glińska S, Bartczak M, Oleksiak S, Wolska A, Gabara B, Posmyk M, Janas K. 2007. Effects of anthocyanin-rich extract from red cabbage leaves on meristematic cells of Allium cepa L. roots treated with heavy metals. Ecotoxicol Environ Saf. 68:343–350. [CrossRef] [PubMed] [Google Scholar]
  • Jadeja R, Batty L. 2013. Metal content of seaweeds in the vicinity of acid mine drainage in Amlwch, North Wales, UK. Indian Journal of bio marine sciences. 42: 16–20. [Google Scholar]
  • Jayasekera R, Rossbach M. 1996. Use of seaweeds for monitoring trace elements in coastal waters. Journal of environmental geochemistry and health. 18: 63–68. [CrossRef] [PubMed] [Google Scholar]
  • Krzesłowska M, Lenartowska M, Mellerowicz EJ, Samardakiewicz S, Woźny A. 2009. Pectinous cell wall thickenings formation—a response of moss protonemata cells to Pb. Environ Exp Bot. 65:119–131. [Google Scholar]
  • Krzesłowska M, Lenartowska M, Samardakiewicz S, Bilski H, Woźny A. 2010. Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable—a remobilization can occur. Environ Pollut. 158:325–338. [Google Scholar]
  • Laparra JM, Vélez D, Montoro R, Barberá R, Farré R. 2003. Estimation of Arsenic bio-accessibility in edible seaweed by an in vitro digestion method. Journal of Agricultural and Food Chemistry. 51: 6080–6085. [CrossRef] [PubMed] [Google Scholar]
  • Lorenzo G. 2000. Heavy metal contamination of brown seaweed and sediments from the UK coastline between the Wear river and the Tees river. Journal of Environment International. 26: 275–286. [Google Scholar]
  • MacMonagail M, Cornish L, Morrison L, Araújo R, Critchley AT. 2017. Sustainable harvesting of wild seaweed resources. European Journal of Phycology. 52: 371–390. [Google Scholar]
  • Makawita GIPS, Wickramasinghe I, Wijesekara I. 2018. Bio-refining of under-utilized Sargassum spp. (phaeophyta) available in Sri Lanka for nutraceutical and functional food applications. Abstract on 5th International Conference on Multidisciplinary Approaches. 30 July 2018. [Google Scholar]
  • Milledge JJ, Harvey PJ. 2016. Ensilage and anaerobic digestion of Sargassum muticum . J. Appl. Phycol. 1: 1–10. [Google Scholar]
  • Moore JW, Ramamoorthy S. 1984. Heavy metals in natural waters. New York, NY: Springer. [CrossRef] [Google Scholar]
  • Mutia GM, Mtolera SPM. 2018. Analysis of bio accumulation of heavy metals in seaweeds Ulva rigida and Halimeda opuntia in validation of their safety for use in aquaculture feeds in Kenya. IOSR Journal of Environmental Science, Toxicology and Food Technology. 12: 55–63. [Google Scholar]
  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A. 2004. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot. 52:199–223. [Google Scholar]
  • Pelloux J, Rustérucci C, Mellerowicz EJ. 2007. New insight into pectin methylesterase structure and function. Trends Plant Sci. 12:267–277. [CrossRef] [PubMed] [Google Scholar]
  • Preston A, Jefferies DJ, Dutton JWR, Harvey BR, Steele AK. 1972. British Isles coastal waters: the concentrations of selected heavy metals in seawater, suspended matter and biological indicators- a pilot survey. J Environment pollution. 3: 69–82. [Google Scholar]
  • Quing C, Xiao-Dong P, Bai-Fen H, Jian LH. 2018. Distribution of metals and metalloids and health risk to population in southeastern China. Scientific Reports. 3578. [PubMed] [Google Scholar]
  • Rao PS, Mantri VA, Ganesan K. 2007. Mineral composition of edible seaweed Porphyra vietnamensis . Journal of Food chemistry. 102: 215–218. [CrossRef] [Google Scholar]
  • Riget F, Johansen P, Asmund G. 1997. Baseline levels and natural variability of elements in three seaweed species from West Greenland. Marine Pollution bulletin Journal. 34: 171–176. [CrossRef] [Google Scholar]
  • Ronan JM, Stengel DB, Raab A, Feldmann J, O'Hea L, Bralatei E, McGovern E. 2017. High proportions of inorganic arsenic in Laminaria digitata but not in Ascophyllum nodosum samples from Ireland. Chemosphere. 186: 17–23. [PubMed] [Google Scholar]
  • Rose M. 2007. Arsenic in seaweed-forms, concentration and dietary exposure. Journal of Food and Chemical Toxicology. 45: 1263–1267. [CrossRef] [Google Scholar]
  • Rubio C, Napoleone G, Luis G, Gutierrez AJ, Gonzalez D, Hardisson A, Revert C. 2017. Metals in edible seaweed. Chemosphere. 173: 572–579. [PubMed] [Google Scholar]
  • Seralathan KK, Prabhu DB, Kui JL, Kannan N, Krishnamoorthy K, Shanthi M, Jayaprakash M. 2008. Assessment of heavy metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, South East India. Chemosphere. 71: 1233–1240. [PubMed] [Google Scholar]
  • Struck BD, Pelzer R, Ostapczuk P, Emons H & Mohl C. 1997. Statistical evaluation of eco system properties influencing the uptake of As, Cd, Co, Cu, Hg, Mn, Ni, Pb and Zn in seaweed (Fucus vesiculosus) and common mussel (Mytilus edulis). Sci.total environ. 207: 29–42. [CrossRef] [Google Scholar]
  • Svedelius N. 1906. About the algae vegetation of a Ceylonian coral reef with special consideration of its periodicity. Botaniska Studier tiilägnade F.R. Kjellmanden. 4th November 1906. Uppsala. 184–221. [Google Scholar]
  • Taylor VF. 2017. Distinct arsenic metabolites following seaweed consumption in humans. Scientific reports. 7: 3920. [CrossRef] [PubMed] [Google Scholar]
  • The State of World Fisheries and Aquaculture contributing to food security and nutrition for all. Rome, FAO 2016. [Google Scholar]
  • USEPA. 2007. Concepts, Methods, and Data Sources for Cumulative Health Risk Assessment of Multiple Chemicals, Exposures and Effects: A Resource Document. US Environmental Protection Agency Washington, DC. [Google Scholar]
  • Wang SL, Xu XR, Sun YX, Liu JL, Li HB. 2013. Heavy metal pollution in coastal areas of South China: a review. Marine pollution bulletin. 76: 7–15. [CrossRef] [PubMed] [Google Scholar]
  • WHO. 1997. Joint FAO/WHO consultation on food consumption and exposure assessment to chemicals in food. Geneva, Switzerland, 10–14 February 1997. [Google Scholar]
  • Young ML. 1975. The transfer of 65Zn and 59Fe along a Fucus serratus (L.) & Littorina obtusata (L.) of food chain. Journal of the marine biological association of UK. 55: 583–610. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.