Open Access
Aquat. Living Resour.
Volume 31, 2018
Article Number 30
Number of page(s) 9
Published online 24 October 2018
  • Akmal M, Hafeez-ur-Rehman M, Ullah S, Younus N, Khan KJ, Qayyum M. 2014. Nutritive value of aquatic plants of Head Baloki on Ravi River, Pakistan. Int J Biosci 4: 115–122. [Google Scholar]
  • AOAC Association of Official Analytical Chemists. Official methods of analysis of AOAC International. 16th Ed. Maryland (USA) J. − Assoc. Off. Anal. Chem, 1999 [Google Scholar]
  • Asimi OA, Khan IA, Bhat TA, Husain, N. 2018. Duckweed (Lemna minor) as a plant protein source in the diet of common carp (Cyprinus carpio) fingerlings. J Pharmacogn Phytochem 7: 42–45. [Google Scholar]
  • Aubin J, Rey-Valette H, Mathé S, Wilfart-Monziols A, Legendre M, Slembrouck J, Chia E, Masson G, Callier M, Blancheton JP, Tocqueville A, Caruso D, Fontaine P. 2014. Guide de mise en œuvre de l'intensification écologique pour les systèmes aquacoles. INRA-Rennes, p. 131 ISBN: 978-2-9547969-0-2. [Google Scholar]
  • Aubin J, Callier M, Rey-Valette H, Mathé S, Wilfart A, Legendre M, Slembrouck J, Caruso D, Chia E, Masson G, Blancheton J-P, Ediwarman, Haryadi J, Prihadi TH, de Matos Casaca J, Tamassia STJ, Tocqueville A, Fontaine P. 2017. Implementing ecological intensification in fish farming: definition and principles from contrasting experiences. Rev Aquacult 1–19. DOI: 10.1111/raq.12231. [Google Scholar]
  • Bairagi A, Ghosh KS, Sen SK, Ra AK. 2002. Duckweed (Lemna polyrhiza) leaf meal as a source of feedstuff in formulated diets for rohu (Labeo rohita Ham.) fingerlings after fermentation with a fish intestinal bacterium. Bioresour Technol 85: 17–24. [Google Scholar]
  • Barko JW, Hardin DG, Matthews MS. 1982. Growth and morphology of submersed freshwater macrophytes in relation to light and temperature. Can. J. Bot. 60: 877–887. [Google Scholar]
  • Bommarco R, Kleijn D, Potts SG. 2013. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28: 230–238. [CrossRef] [PubMed] [Google Scholar]
  • Bosma RH, Verdegem MC. 2011. Sustainable aquaculture in ponds: principles, practices and limits. Livest Sci 139: 58–68. [Google Scholar]
  • Carlozzi P, Padovani G. 2016. The aquatic fern Azolla as a natural plant-factory for ammonia removal from fish-breeding fresh wastewater. Environ Sci Pollut Res 23: 8749–8755. [CrossRef] [Google Scholar]
  • Carr GM, Duthie HC, Taylor WD. 1997. Models of aquatic plant productivity: a review of the factors that influence growth. Aquat Bot 59: 195–215. [Google Scholar]
  • Crispim MC, Vieira ACB, Coelho SFM, Medeiros AMA. 2009. Nutrient uptake efficiency by macrophyte and biofilm: practical strategies for small-scale fish farming. Acta Limnol Bras 21: 387–391. [Google Scholar]
  • Das M, Rahim FI, Hossain MA. 2018. Evaluation of fresh Azolla pinnata as a low-cost supplemental feed for Thai Silver Barb Barbonymus gonionotus. Fishes 3: 15. [Google Scholar]
  • Drew MD, Borgeson TL, Thiessen DL. 2007. A review of processing of feed ingredients to enhance diet digestibility in finfish. Anim Feed Sci Technol 138: 118–136. [Google Scholar]
  • Dersjant-Li Y. 2002. The use of soy protein in aquafeeds. Avances en Nutricion Acuicola VI Memorias del VI Simposium Internacional de Nutricion Acuicola 3: 541–558. [Google Scholar]
  • Dhote S, Dixit S. 2009. Water quality improvement through macrophytes − a review. Environ Monit Assess 152: 149–153. [CrossRef] [PubMed] [Google Scholar]
  • Elfitasari T, Albert A. 2017. Challenges encountered by small scale fish farmers in assuring fish product sustainability. Omni-Akuatika 13: 128–136. [CrossRef] [Google Scholar]
  • El-Sayed AFM. 2003. Effects of fermentation methods on the nutritive value of water hyacinth for Nile tilapia Oreochromis niloticus (L.) fingerlings. Aquaculture 218: 471–478. [Google Scholar]
  • FAO. 2018. The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all, Rome p. 200 [Google Scholar]
  • Ferdoushi Z, Haque F, Khan S, Haque M. 2008. The effects of two aquatic floating macrophytes (Lemna and Azolla) as biofilters of nitrogen and phosphate in fish ponds. Turk J Fish Aquat Sci 8: 253–258. [Google Scholar]
  • Fiogbé ED, Micha JC, Van Hove C. 2004. Use of a natural aquatic fern, Azolla microphylla, as a main component in food for the omnivorous-phytoplanktonophagous tilapia, Oreochromis niloticus L. J Appl Ichthyol 20: 517–520. [Google Scholar]
  • Gaitlin DM, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu G, Krogdahl A, Nelson R, Overturf K, Rust M, Sealy W, Skonberg D, Souza EJ, Stone D, Rich Wilson R, Wurtele E. 2007. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquacult Res 38: 551–579. [CrossRef] [Google Scholar]
  • Goopy JP, Murray PJ. 2003. A review on the role of duckweed in nutrient reclamation and as a source of animal feed. Asian-Australas J Anim Sci 16: 297–305. [Google Scholar]
  • Griffon M. 2010. Pour des agricultures écologiquement intensives des territoires à haute valeur environnementale et de nouvelles politiques agricoles. Éd. De l'Aube (Monde en cours), La Tour d'Aigues, 144 p. [Google Scholar]
  • Hasan MR, Rina C. 2009. Use of algae and aquatic macrophytes as feed in small-scale aquaculture: a review. FAO Fisheries and Aquaculture Technical Paper, 531, 123 p. [Google Scholar]
  • Henry-Silva GG, Camargo AFM. 2006. Efficiency of aquatic macrophytes to treat Nile tilapia pond effluents. Sci Agric 63: 433–438. [CrossRef] [Google Scholar]
  • Invasive Species Specialist Group ISSG. The Global Invasive Species Database. Version 2015.1., 2015 [Google Scholar]
  • Iqbal S. 1999. Duckweed aquaculture. Potentials, possibilities and limitations for combined wastewater treatment and animal feed production in developing countries. SANDEC Report n 6/99, 91 p. [Google Scholar]
  • Kasumyan AO, Doving, KB. 2003. Taste preferences in fishes. Fish Fish 4: 289–347. [CrossRef] [Google Scholar]
  • Kollah B, Patra AK, Mohanty SR. 2016. Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change. Environ Sci Pollut Res 23: 4358–4369. [CrossRef] [Google Scholar]
  • Kawarazuka N, Béné C. 2010. Linking small-scale fisheries and aquaculture to household nutritional security: an overview. Food Secur 2: 343–357. [Google Scholar]
  • Madsen TV, Cedergreen N. 2002. Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshwater Biol 2: 283–291. [CrossRef] [Google Scholar]
  • Mandal RN, Datta AK, Sarangi N, Mukhopadhyay PK. 2010. Diversity of aquatic macrophytes as food and feed components to herbivorous fish-a review. Indian J Fish 57: 65–73. [Google Scholar]
  • MEA, Millennium Ecosystem Assessment. Ecosystems and human well-being: synthesis. Island Press, Washington DC, 2005 160p. ISBN: 9781597260404. [Google Scholar]
  • Muradov N, Taha M, Miranda AF, Kadali K, Gujar A, Rochfort S, Stevenson T, Ball AS, Mourado, A. 2014. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production. Biotechnol Biofuels 7: 30. [Google Scholar]
  • Newton JW, Herman AI. 1979. Isolation of cyanobacteria from the aquatic fern, Azolla. Arch Microbiol 120: 161–165. [Google Scholar]
  • Phillips M, Henriksson PJG, Tran N, Chan CY, Mohan CV, Rodriguez U-P, Suri S, Hall S, Koeshendrajana S. 2015. Exploring Indonesian aquaculture futures. Penang, Malaysia: WorldFish. Program Report, 2015-39, 15 p. [Google Scholar]
  • Sipaúba-Tavares LH, Favero EGP, Braga FDS. 2002. Utilization of macrophyte biofilter in effluent from aquaculture: I. Floating plant. Braz J Microbiol 62: 713–723. [Google Scholar]
  • Soto D, Aguilar-Manjarrez J, Brugère C, Angel D, Bailey C, Black K, Edwards P, Costa-Pierce B, Chopin T, Deudero S, Freeman S, Hambrey J, Hishamunda N, Knowler D, Silvert W, Marba N, Mathe S, Norambuena R, Simard F, Tett P, Troell M, Wainberg A, in: D. Soto, J. Aguilar-Manjarrez and N. Hishamunda (Eds.), Applying an ecosystem-based approach to aquaculture: principles, scales and some management measure, Building an ecosystem approach to aquaculture, FAO Fisheries and Aquaculture Proceedings 14, Rome, 2008 pp. 15–35. [Google Scholar]
  • Redding T, Todd S, Midlen A. 1997. The treatment of aquaculture wastewaters—a botanical approach. J Environ Manage 50: 283–299. [Google Scholar]
  • Reddy KR, De Busk WF. 1985. Nutrient removal potential of selected aquatic macrophytes. J Environ Qual 14: 459–462. [Google Scholar]
  • Shiomi N, Kitoh S. 2001. Culture of Azolla in a pond, nutrient composition, and use as fish feed. Soil Sci Plant Nutr 47: 27–34. [CrossRef] [Google Scholar]
  • Tacon AG, Metian M. 2015. Feed matters: satisfying the feed demand of aquaculture. Rev Fish Sc 23: 1–10. [Google Scholar]
  • Tacon AG, Metian M. 2018. Food Matters: fish, Income, and food Supply—a comparative analysis. Rev Fish Sci 26: 1–14. [Google Scholar]
  • Velásquez YCC. Study on the locally available aquatic macrophytes as fish feed for rural aquaculture purposes in South America (Doctoral dissertation, Humboldt-Universität zu Berlin, Landwirtschaftlich-Gärtnerische Fakultät), 2016. DOI: 10.18452/17510. [Google Scholar]
  • Yılmaz E, Akyurt İ, Günal G. 2004. Use of duckweed, Lemna minor, as a protein feedstuff in practical diets for common carp, Cyprinus carpio, fry. Turk J Fish Aquat Sci 4: 105–109. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.