Free Access
Issue
Aquat. Living Resour.
Volume 30, 2017
Article Number 20
Number of page(s) 12
DOI https://doi.org/10.1051/alr/2017018
Published online 16 June 2017
  • Ardura A, Planes S, Garcia-Vazquez G. 2013. Applications of DNA barcoding to fish landings: authentication and diversity assessment. ZooKeys 365: 49–65, doi:10.3897/zookeys.365.6409. [Google Scholar]
  • Bacalbasa-Dobrovici, N. 1997. Endangered migratory sturgeons of the Lower Danube River and its delta. Environ Biol Fishes 48: 201–207. [Google Scholar]
  • Benson D, Cavanaugh M, Clark K, et al. 2013. GenBank. Nucl Acids Res 41(Database issue): D36–D42. doi:10.1093/nar/gks1195, www.ncbi.nlm.nih.gov/genbank [Epub 2012 Nov 27, accessed on 16 July 2016]. [CrossRef] [PubMed] [Google Scholar]
  • Birstein V, Ruban G, Ludwig, A, Doukakis, P, DeSalle, R. 2005. The enigmatic Caspian Sea Russian sturgeon: how many cryptic forms does it contain? Syst Biodivers 3(2): 203–218, doi:10.1017/S1477200005001647. [Google Scholar]
  • Birstein V, Desalle R, Doukakis P, Hanner R, Ruban G, Wong E. 2009. Testing taxonomic boundaries and the limit of DNA barcoding in the Siberian sturgeon, Acipenser baerii. Mitochondrial DNA 20(5–6): 110–118, doi:10.3109/19401730903168182. [CrossRef] [PubMed] [Google Scholar]
  • Cline E. 2012. Marketplace substitution of Atlantic salmon for Pacific salmon in Washington state detected by DNA barcoding. Food Res Int 45: 388–393. [Google Scholar]
  • Collins R, Cruickshank R. 2012. The seven deadly sins of DNA barcoding. Mol Ecol Resour, doi:10.1111/1755-0998.12046. [Google Scholar]
  • Costache M, Dudu A, Georgescu SE. 2012. Low Danube sturgeon identification using DNA markers. In: Caliskan M, ed. Analysis of genetic variation in animals. InTech. [Google Scholar]
  • Council Regulation (EC) No 1379/2013 – accessed on 26 July 2016, http://eur-lex.europa. eu/legal-content/EN/ALL/?uri=CELEX:32013R1379. [Google Scholar]
  • Darriba D, Taboada G, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8): 772. [Google Scholar]
  • Dubey B, Meganathan PR, Haque I. 2011. DNA mini-barcoding: an approach for forensic identification of some endangered Indian snake species. Forensic Sci Int: Genet 5(3): 181–184. doi:10.1016/j.fsigen.2010.03.001. [CrossRef] [Google Scholar]
  • Dudu A, Georgescu SE, Popa O, Dinischiotu A, Costache M. 2011a. Mitochondrial 16S and 12S rRNA sequence analysis in four salmonid species from Romania – phylogenetic aspects. Acta Zool Acad Sci Hung 57(3): 233–246. [Google Scholar]
  • Dudu A, Georgescu SE, Berrebi P, Costache M. 2012. Site heteroplasmy in the mitochondrial cytochrome b gene of the sterlet sturgeon Acipenser ruthenus. Genet Mol Biol 35: 886–891. [CrossRef] [PubMed] [Google Scholar]
  • Dudu A, Macarie RD, Burcea A, Georgescu SE, Costache M. 2015. Identification of Bester Hybrid and its Parental Species (♀ Huso huso Linnaeus, 1758 and ♂ Acipenser ruthenus Linnaeus, 1758) by Nuclear Markers. Sci Pap: Anim Sci Biotechnol 48(1): 81–85. [Google Scholar]
  • Dudu A, Suciu R, Paraschiv M, Georgescu SE, Costache M, Berrebi P. 2011b. Nuclear markers of Danube sturgeons' hybridization. Int J Mol Sci 12: 6796–6809, doi:10.3390/ijms12106796. [Google Scholar]
  • Estoup A, Largiader C, Perrot E, Chourrot D. 1996. Rapid one-tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes. Mol Mar Biol Biotechnol 5: 295–298. [Google Scholar]
  • Faisal A, Azizah S, Darlina N. 2012. Utilization of DNA barcoding for identification of fish products. In: Proceedings of the 2nd Annual International Conference, Syiah Kuala University, 2(1), pp. 55–58. [Google Scholar]
  • Filonzi L, Chiesa S, Vaghi M, Marzano F. 2010. Molecular barcoding reveals mislabelling of commercial fish products in Italy. Food Res Int 43: 1383–1388. [Google Scholar]
  • Freyhof J. 2011. Salmo labrax. The IUCN Red List of Threatened Species 2011: e.T135658A4172650, doi:10.2305/IUCN.UK. 2008.RLTS.T135658A4172650, accessed on 28 July 2016. [Google Scholar]
  • Freyhof, J, Geiger, M, Navodaru, I. 2013. Short overview on Romanian ichthyofauna in 2012. In: Proceedings of the 4th Aquatic Biodiversity International Conference, p. 6. [Google Scholar]
  • Galimberti A, De Mattia F, Losa A, et al. 2012. DNA barcoding as a new tool for food traceability. Food Res Int 50: 55–63. [Google Scholar]
  • Georgescu SE, Dudu A, Suciu R, Vîrban I, Ionescu O, Costache M. 2011. Evaluarea si caracterizarea genetică a salmonidelor din România. București: Editura Universității din București, pp. 7-38. [Google Scholar]
  • Gessner J, Freyhof J, Kottelat M. 2010. The IUCN Red List of Threatened Species 2010, doi:10.2305/IUCN.UK. 2010-1.RLTS.T227A13039007.en − accessed on 19 July 2016. [Google Scholar]
  • Ghadirnejad H, Siti Azizah M, Salehi A, et al. 2009. Barcoding of five sturgeon species in Iran. J Mol Genet 1(2): 29–34. [CrossRef] [Google Scholar]
  • Guindon S, Gascuel O. 2003. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52: 696–704. [CrossRef] [PubMed] [Google Scholar]
  • Guo X, Liu S, Liu Y. 2006. Evidence for recombination of mitochondrial DNA in triploid crucian carp. Genetics 172: 1745–1749. [PubMed] [Google Scholar]
  • Hall T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Sympos Ser 41: 95–98. [Google Scholar]
  • Hebert P, Cywinska A, Ball SL, deWaard JR. 2003. Biological Identification through DNA barcodes. Proc R Soc 270: 313–321. [CrossRef] [PubMed] [Google Scholar]
  • Holmes BH, Steinke D, Ward RD. 2009. Identification of shark and ray fins using DNA barcoding. Fish Res 95: 280–288. [Google Scholar]
  • EUNIS Species Database, http://eunis.eea.europa.eu/species/12979 – accessed on 28 July 2016. [Google Scholar]
  • Jo H, Gim J, Jeong K, Kim H, Joo G. 2014. Application of DNA barcoding for identification of freshwater carnivorous fish diets: is number of prey items dependent on size class for Micropterus salmoides? Ecol Evol 4(2): 219–229, doi:10.1002/ece3.921. [CrossRef] [PubMed] [Google Scholar]
  • Jombart T, Ahmed I. 2011. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. doi:10.1093/bioinformatics/btr521. [Google Scholar]
  • Katoh K, Standley D. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4): 772–780, doi:10.1093/molbev/mst010. [CrossRef] [PubMed] [Google Scholar]
  • Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120. [CrossRef] [PubMed] [Google Scholar]
  • Kottelat M. 1997. European freshwater fishes. Biologia 52(Suppl. 5): 1–271. [Google Scholar]
  • Kottelat M, Freyhof J. 2007. Handbook of European freshwater fishes. Publications Kottelat, Cornol, Switzerland, 646 p. [Google Scholar]
  • Lewis L, Richardson D, Zakharov E, Hanner R. 2016. Integrating DNA barcoding of fish eggs into ichthyoplankton monitoring programs. Fish Bull 114(2): 153–165. [CrossRef] [Google Scholar]
  • Li J, Liu D, Ma Q, et al. 2015. Discriminating Dabry's sturgeon (Acipenser dabryanus) and Chinese sturgeon (A. sinensis) based on DNA barcode and six nuclear markers. Hydrobiologia 757(1): 185–196, doi:10.1007/s10750-015-2251. [Google Scholar]
  • Little DP. 2014. A DNA mini-barcode for land plants. Mol Ecol Resour 14(3): 437–446, doi:10.1111/1755-0998.12194. [CrossRef] [PubMed] [Google Scholar]
  • Ludwig A. 2006. A sturgeon view on conservation genetics. Eur J Wildl Res 52(1): 3–8, doi:10.1007/s10344-005-0006-2. [CrossRef] [Google Scholar]
  • Ludwig A, Debus L, Jenneckens I. 2002. A molecular approach to control the international trade in black caviar. Int Rev Hydrobiol 87: 661–673. [Google Scholar]
  • Ludwig A, Lieckfeldt D, Jahrl J. 2015. Mislabelled and counterfeit sturgeon caviar from Bulgaria and Romania. J Appl Ichthyol 31(4): 587–591, doi:10.1111/jai.12856. [Google Scholar]
  • Marić D, Rakočević J. 2015. Some Life-History Traits of the Adriatic Brown Trout, Salmo farioides Karaman, 1938 (Salmonidae) from the Morača River (Montenegro). Acta Zool Bulg 67(2): 249–257. [Google Scholar]
  • Meier R, Shiyang K, Vaidya G, Ng P. 2006. DNA barcoding and taxonomy in diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55(5): 715–728, doi:10.1080/10635150600969864. [CrossRef] [PubMed] [Google Scholar]
  • Meusnier I, Singer GAC, Landry J, Hickey DA, Hebert PDN, Hajibabaei M. 2008. A universal DNA mini-barcode for biodiversity analysis. BMC Genomics 9(1): 214, doi:10.1186/1471-2164-9-214. [CrossRef] [PubMed] [Google Scholar]
  • Miller M, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, LA, pp. 1–8, https://www.phylo.org/ – accessed on 23 May 2016. [Google Scholar]
  • Oţel V. 2007. Atlasul peștilor din Rezervația Biosferei Delta Dunării. Centrul de Informare D. Dunării, 482 p. [EDP Sciences] [Google Scholar]
  • Paraschiv M, Suciu R. 2016. Possible evidence about recruitment of Black Sea salmon (Salmo labrax Pallas, 1814) in tributaries of the Lower Danube River. In: Proceedings of The 41st International Association for Danube Research Conference, p. 25. [Google Scholar]
  • Paraschiv M, Suciu R, Suciu M. 2006. Present state of sturgeon stocks in the Lower Danube River, Romania. In: Proceedings of the 36th International Conference of IAD, Austrian Committee Danube Research, pp. 152–158. [EDP Sciences] [Google Scholar]
  • Pardo M, Jimenez E, Perez-Villarreal B. 2016. Misdescription incidents in seafood sector. Food Control 62: 277–283. [CrossRef] [Google Scholar]
  • Peng Z, Ludwig A, Wang D, Diogo R, Wei Q, He S. 2007. Age and biogeography of major clades in sturgeons and paddlefishes (Pisces: Acipenseriformes). Mol Phylogenet Evol 42: 854–862. [CrossRef] [PubMed] [Google Scholar]
  • Rach J, de Salle R, Sarkar I, Schierwater B, Hadrys H. 2008. Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proc R Soc 275: 237–247. [Google Scholar]
  • Ratnasingham S, Hebert P. 2013. A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE 8(8): e66213, doi:10.1371/journal.pone.0066213. [CrossRef] [PubMed] [Google Scholar]
  • Raymakers C. 2007. CITES, the Convention on international trade in endangered species of Wild Fauna and Flora: its role in the conservation of Acipenseriformes. J Appl Ichthyol 22: 53–65. [Google Scholar]
  • Shokralla S, Hellberg R, Handy S, King I, Hajibabaei M. 2015. A DNA mini-barcoding system for authentication of processed fish products. Sci Rep 5: doi:10.1038/srep15894. [Google Scholar]
  • Simonović P, Vidović Z, Tošić A, Škraba D, Čanak-Atlagić J, Nikolić V. 2015. Risks to stocks of native trout of the Genus Salmo (Actinopterygii: Salmoniformes: Salmonidae) of Serbia and management for their recovery. Acta Ichthyol Piscat 45(2): 161–173, doi:10.3750/Aip2015.45.2.06. [CrossRef] [Google Scholar]
  • Smederevac-Lalić M, Jarić I, Višnjić-Jeftić Ž, et al. 2011. Management approaches and aquaculture of sturgeons in the Lower Danube region countries. J Appl Ichthyol 27(Suppl. 3): 94–100. [CrossRef] [Google Scholar]
  • Stelkens R, Jaffuel G, Escher M, Wedekind C. 2012. Genetic and phenotypic population divergence on a microgeographic scale in brown trout. Mol Ecol, doi:10.1111/j.1365-294X. 2012.05581.x. [Google Scholar]
  • Stoeckle M, Waggoner P, Ausubel J. 2004. Barcoding life: ten reasons. Consortium for the barcode of life (CBOL), www.barcoding.si.edu – accessed on 26 July 2016. [Google Scholar]
  • Tamura K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 9: 678–687. [PubMed] [Google Scholar]
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed] [Google Scholar]
  • Taylor H, Harris W. 2012. An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Mol Ecol Resour 12(3): 377–388, doi:10.1111/j.1755-0998.2012.03119. [CrossRef] [PubMed] [Google Scholar]
  • Untergasser A, Cutcutache I, Koressaar T, et al. 2012. Primer3–new capabilities and interfaces. Nucl Acids Res 40(15): e115. [CrossRef] [PubMed] [Google Scholar]
  • Ward R, Hanner R, Hebert P. 2009. The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol 74(2): 329–356, doi:10.1111/j.1095-8649.2008.02080. [CrossRef] [PubMed] [Google Scholar]
  • Ward R, Zemlak T, Innes B, Last P, Hebert P. 2005. DNA barcoding Australia's fish species. Philos Trans R Soc B 360: 1847–1857. [CrossRef] [PubMed] [Google Scholar]
  • Yang Z, Rannala B. 2016. Species identification by Bayesian fingerprinting: a powerful alternative to DNA barcoding. bioRxiv, preprint, doi:10.1101/041608, http://www.biorxiv.org/content/biorxiv/early/2016/02/28/041608.full.pdf. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.