Free Access
Issue |
Aquat. Living Resour.
Volume 30, 2017
International Meeting on Marine Research 2016
|
|
---|---|---|
Article Number | 16 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/alr/2017012 | |
Published online | 24 May 2017 |
- Alberto F. 2009. MsatAllele_1.0: an R package to visualize the binning of microsatellite alleles. J Hered 100: 394–397. [CrossRef] [PubMed] [Google Scholar]
- Alberto F, Arnaud-Haond S, Duarte CM, Serrão EA. 2006. Genetic diversity of a clonal angiosperm near its range limit: the case of Cymodocea nodosa at the Canary Islands. Mar Ecol Prog Ser 309: 117–129. [CrossRef] [Google Scholar]
- Assis J, Serrão EA, Claro B, Perrin C, Pearson GA. 2014. Climate-driven range shifts explain the distribution of extant gene pools and predict future loss of unique lineages in a marine brown alga. Mol Ecol 23: 2797–2810. [CrossRef] [PubMed] [Google Scholar]
- Ayata SD, Lazure P, Thiébaut É, 2010. How does the connectivity between populations mediate range limits of marine invertebrates? A case study of larval dispersal between the Bay of Biscay and the English Channel (North-East Atlantic). Prog Oceanogr 87(1): 18–36. [CrossRef] [Google Scholar]
- Ayata SD, Stolba R, Comtet T, Thiébaut E. 2011. Meroplankton distribution and its relationship to coastal mesoscale hydrological structure in the northern Bay of Biscay (NE Atlantic). J Plankton Res 33: 1193–1211. [CrossRef] [Google Scholar]
- Balloux F, Lehmann L, de Meeûs T. 2003. The population genetics of clonal and partially clonal diploids. Genetics 164(4): 1635–1644. [Google Scholar]
- Belanger CL, Jablonski D, Roy K, Berke SK, Krug AZ, Valentine JW. 2012. Global environmental predictors of benthic marine biogeographic structure. Proc Natl Acad Sci U S A 109(35): 14046–14051. [CrossRef] [PubMed] [Google Scholar]
- Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. 2004. GENETIX 4.05, Population genetics software for Windows TM. France: Université de Montpellier II, Montpellier. [Google Scholar]
- Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57: 289–300. [MathSciNet] [Google Scholar]
- Billard E, Serrão E, Pearson G, Destombe C, Valero M. 2010. Fucus vesiculosus and spiralis species complex: a nested model of local adaptation at the shore level. Mar Ecol Prog Ser 405: 163–174. [CrossRef] [Google Scholar]
- Billot C, Engel CR, Rousvoal S, Kloareg B, Valero M. 2003. Current patterns, habitat discontinuities and population genetic structure: the case of the kelp Laminaria digitata in the English Channel. Mar Ecol Prog Ser 253: 111–121. [CrossRef] [Google Scholar]
- Blanchette CA, Miner CM, Raimondi PT, Lohse D, Heady KE, Broitman BR. 2008. Biogeographical patterns of rocky intertidal communities along the Pacific coast of North America. J Biogeogr 35(9): 1593–1607. [CrossRef] [Google Scholar]
- Breeman AM. 1988. Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgol Meeresunters 42(2): 199–241. [CrossRef] [Google Scholar]
- Cánovas FG, Mota CF, Serrão EA, Pearson GA. 2011. Driving south: a multi-gene phylogeny of the brown algal family Fucaceae reveals relationships and recent drivers of a marine radiation. BMC Evol Biol 11(1): 1. [CrossRef] [PubMed] [Google Scholar]
- Chakraborty R, Kimmel M, Stivers DN, Davison LJ, Deka R. 1997. Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc Natl Acad Sci U S A 94(3): 1041–1046. [CrossRef] [PubMed] [Google Scholar]
- Chapuis MP, Estoup A. 2007. Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24: 621–631. [CrossRef] [PubMed] [Google Scholar]
- Chybicki IJ, Burczyk J. 2009. Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100(1): 106–113. [CrossRef] [PubMed] [Google Scholar]
- Coleman MA, Brawley SH. 2005. Are life history characteristics good predictors of genetic diversity and structure? A case study of the intertidal alga Fucus spiralis (Heterokontophyta; Phaeophyceae). J Phycol 41(4): 753–762. [CrossRef] [Google Scholar]
- Couceiro L, Robuchon M, Destombe C, Valero M. 2013. Management and conservation of the kelp species Laminaria digitata: using genetic tools to explore the potential exporting role of the MPA “Parc naturel marin d'Iroise”. Aquat Living Resour 26: 197–205. [CrossRef] [EDP Sciences] [Google Scholar]
- Coyer JA, Hoarau G, Oudot-Le Secq MP, Stam WT, Olsen JL. 2006. A mtDNA based phylogeny of the brown algal genus Fucus (Heterokontophyta; Phaeophyta). Mol Phylogenetics Evol 39: 209–222. [CrossRef] [Google Scholar]
- Coyer JA, Hoarau G, Beszteri B, Pearson G, Olsen JL. 2009. Expressed sequence tag-derived polymorphic SSR markers for Fucus serratus and amplification in other species of Fucus. Mol Ecol Res 9: 168–170. [CrossRef] [Google Scholar]
- Dakin EE, Avise JC. 2004. Microsatellite null alleles in parentage analysis. Hered 93(5): 504–509. [CrossRef] [PubMed] [Google Scholar]
- Dharmarajan G, Beatty WS, Rhodes OE. 2013. Heterozygote deficiencies caused by a Wahlund effect: dispelling unfounded expectations. J Wildl Manage 77(2): 226–234. [CrossRef] [Google Scholar]
- Dijkstra JA, Boudreau J, Dionne M. 2012. Species-specific mediation of temperature and community interactions by multiple foundation species. Oikos 121(5): 646–654. [CrossRef] [Google Scholar]
- Earl DA, von Holdt BM. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2): 359–361. [Google Scholar]
- Eggert A. 2012. Seaweed responses to temperature. In: Seaweed biology. Berlin Heidelberg: Springer, pp. 47–66. [CrossRef] [Google Scholar]
- Ellegren H. 2004. Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5(6): 435–445. [CrossRef] [PubMed] [Google Scholar]
- Engel CR, Brawley SH, Edwards KJ, Serrão EA. 2003. Isolation and cross-species amplification of microsatellite loci from the fucoid seaweeds Fucus vesiculosus, F. serratus and Ascophyllum nodosum (Heterokontophyta, Fucaceae). Mol Ecol Notes 3: 180–182. [CrossRef] [Google Scholar]
- Engel CR, Destombe C, Valero M. 2004. Mating system and gene flow in the red seaweed Gracilaria gracilis: effect of haploid-diploid life history and intertidal rocky shore landscape on fine-scale genetic structure. Heredity 92(4): 289–298. [CrossRef] [PubMed] [Google Scholar]
- Engel CR, Daguin C, Serrão EA. 2005. Genetic entities and mating system in hermaphroditic Fucus spiralis and its close dioecious relative F. vesiculosus (Fucaceae, Phaeophyceae). Mol Ecol 14: 2033–2046. [CrossRef] [PubMed] [Google Scholar]
- Evanno G, Regnaut S, Goudet J, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611–2620. [CrossRef] [PubMed] [Google Scholar]
- Gallon RK, Robuchon M, Leroy B, Le Gall L, Valero M, Feunteun E. 2014. Twenty years of observed and predicted changes in subtidal red seaweed assemblages along a biogeographical transition zone: inferring potential causes from environmental data. J Biogeogr 41: 2293–2306. [CrossRef] [Google Scholar]
- Garreau P. 1993. Hydrodynamics of the north brittany coast – a synoptic study. Oceanol Acta 16(5–6): 469–477. [Google Scholar]
- Gerlach G, Jueterbock A, Kraemer P, Deppermann J, Harmand P. 2010. Calculations of population differentiation based on G(ST) and D: forget G(ST) but not all of statistics! Mol Ecol 19: 3845–3852. [CrossRef] [PubMed] [Google Scholar]
- Gilg MR, Hilbish TJ. 2003. The geography of marine larval dispersal: coupling genetics with fine-scale physical oceanography. Ecology 84: 2989–2998. [CrossRef] [Google Scholar]
- Goldson AJ, Hughes RN, Gliddon CJ. 2001. Population genetic consequences of larval dispersal mode and hydrography: a case study with bryozoans. Mar Biol 138(5): 1037–1042. [CrossRef] [Google Scholar]
- Golléty C, Riera P, Davoult D. 2010. Complexity of the food web structure of the Ascophyllum nodosum zone evidenced by a δ13C and δ15N study. J Sea Res 64(3): 304–312. [CrossRef] [Google Scholar]
- Guillemin ML, Valero M, Tellier F, Macaya EC, Destombe C, Faugeron S. 2016. Phylogeography of seaweeds in the South East Pacific: complex evolutionary processes along a latitudinal gradient. In: Hu ZM, Fraser C, eds. Seaweed phylogeography. Netherlands: Springer, pp. 251–277. [CrossRef] [Google Scholar]
- Hawkins SJ, Southward AJ, Genner MJ. 2003. Detection of environmental change in a marine ecosystem − evidence from the western English Channel. Sci Total Environ 310(1): 245–256. [CrossRef] [PubMed] [Google Scholar]
- Harley CD, Anderson KM, Demes KW, et al. 2012. Effects of climate change on global seaweed communities. J Phycol 48(5): 1064–1078. [CrossRef] [PubMed] [Google Scholar]
- Haye PA, Segovia NI, Muñoz-Herrera NC, et al. 2014. Phylogeographic structure in benthic marine invertebrates of the southeast Pacific coast of Chile with differing dispersal potential. PLOS ONE 9(2): e88613. [CrossRef] [PubMed] [Google Scholar]
- Helmuth B, Mieszkowska N, Moore P, Hawkins SJ. 2006. Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu Rev Ecol Evol Syst 37: 373–404. [CrossRef] [Google Scholar]
- Hoarau G, Coyer JA, Veldsink JH, Stam WT, Olsen JL. 2007. Glacial refugia and recolonization pathways in the brown seaweed Fucus serratus. Mol Ecol 16: 3606–3616. [CrossRef] [PubMed] [Google Scholar]
- Hoffmann A, Griffin P, Dillon S, et al. 2015. A framework for incorporating evolutionary genomics into biodiversity conservation and management. Clim Chang Responses 2(1): 1. [Google Scholar]
- Innes DJ. 1988. Genetic differentiation in the intertidal zone in populations of the alga Enteromorpha linza (Ulvales: Chlorophyta). Mar Biol 97(1): 9–16. [CrossRef] [Google Scholar]
- Johannesson K, Johansson D, Larsson KH, et al. 2011. Frequent clonality in fucoids (Fucus radicans and Fucus vesiculosus; Fucales, Phaeophyceae) in the Baltic Sea. J Phycol 47(5): 990–998. [CrossRef] [PubMed] [Google Scholar]
- Jolly MT, Jollivet D, Gentil F, Thiébaut E, Viard F. 2005. Sharp genetic break between Atlantic and English Channel populations of the polychaete Pectinaria koreni, along the north coast of France. Heredity 94: 23–32. [CrossRef] [PubMed] [Google Scholar]
- Johnson MS, Black R. 1984. The Wahlund effect and the geographical scale of variation in the intertidal limpet Siphonaria sp. Mar Biol 79(3): 295–302. [CrossRef] [Google Scholar]
- Jueterbock A, Tyberghein L, Verbruggen H, Coyer JA, Olsen JL, Hoarau G. 2013. Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecol Evol 3(5): 1356–1373. [CrossRef] [PubMed] [Google Scholar]
- Keenan K, McGinnity P, Cross TF, Crozier WW, Prodohl PA. 2013. diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4: 782–788. [CrossRef] [Google Scholar]
- Kelly RP, Palumbi SR. 2010. Genetic structure among 50 species of the northeastern Pacific rocky intertidal community. PLoS ONE 5(1): e8594. [CrossRef] [PubMed] [Google Scholar]
- Kordas RL, Harley CD, O'Connor MI. 2011. Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J Exp Mar Biol Ecol 400(1): 218–226. [CrossRef] [Google Scholar]
- Krueger-Hadfield SA, Roze D, Mauger S, Valero M. 2013. Intergametophytic selfing and microgeographic genetic structure shape populations of the intertidal red seaweed Chondrus crispus. Mol Ecol 22(12): 3242–3260. [CrossRef] [PubMed] [Google Scholar]
- Ladah LB, Bermudez R, Pearson GA, Serrão EA. 2003. Fertilization success and recruitment of dioecious and hermaphroditic fucoid seaweeds with contrasting distributions near their southern limit. Mar Ecol Prog Ser 262: 173–183. [CrossRef] [Google Scholar]
- Leys M, Petit EJ, El-Bahloul Y, Liso C, Fournet S, Arnaud JF. 2014. Spatial genetic structure in Beta vulgaris subsp. maritima and Beta macrocarpa reveals the effect of contrasting mating system, influence of marine currents, and footprints of postglacial recolonization routes. Ecol Evol 4(10): 1828–1852. [CrossRef] [PubMed] [Google Scholar]
- Lima FP, Queiroz N, Ribeiro PA, Hawkins SJ, Santos AM. 2006. Recent changes in the distribution of a marine gastropod, Patella rustica Linnaeus, 1758, and their relationship to unusual climatic events. J Biogeogr 33(5): 812–822. [CrossRef] [Google Scholar]
- Lima FP, Ribeiro PA, Queiroz N, Hawkins SJ, Santos AM. 2007. Do distributional shifts of northern and southern species of algae match the warming pattern? Glob Chang Biol 13: 2592–2604. [CrossRef] [Google Scholar]
- Lourenço CR, Zardi GI, McQuaid CD, et al. 2016. Upwelling areas as climate change refugia for the distribution and genetic diversity of a marine macroalga. J Biogeogr 43: 1595–1607. [CrossRef] [Google Scholar]
- Lüning K. 1990. Seawe eds their environment, biogeography and ecophysiology. New York: Wiley. [Google Scholar]
- Jost L. 2008. GST and its relatives do not measure differentiation. Mol Ecol 17(18): 4015–4026. [CrossRef] [PubMed] [Google Scholar]
- Marko PB. 2004. ‘What's larvae got to do with it?’ Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential. Mol Ecol 13(3): 597–611. [CrossRef] [PubMed] [Google Scholar]
- Martinez B, Viejo RM, Carreño F, Aranda SC. 2012. Habitat distribution models for intertidal seaweeds: responses to climatic and non-climatic drivers. J Biogeogr 39: 1877–1890. [CrossRef] [Google Scholar]
- Meirmans PG, Hedrick PW. 2011. Assessing population structure: FST and related measures. Mol Ecol Resour 11(1): 5–18. [CrossRef] [PubMed] [Google Scholar]
- Mieszkowska N, Sugden HE. 2016. Climate-driven range shifts within benthic habitats across a marine biogeographic transition zone. Adv Ecol Res 55: 325–369. [CrossRef] [Google Scholar]
- Mieszkowska N, Hawkins SJ, Burrows MT, Kendall MA. 2007. Long-term changes in the geographic distribution and population structures of Osilinus lineatus (Gastropoda: Trochidae) in Britain and Ireland. J Mar Biol Assoc UK 87(2): 537–545. [CrossRef] [Google Scholar]
- Mieszkowska N, Sugden H, Firth LB, Hawkins SJ. 2014. The role of sustained observations in tracking impacts of environmental change on marine biodiversity and ecosystems. Philos Trans R Soc Lond A: Math Phys Eng Sci 372(2025): 20130339. [Google Scholar]
- Monteiro CA, Serrão EA, Pearson GA. 2012. Prezygotic barriers to hybridization in marine broadcast spawners: reproductive timing and mating system variation. PLoS ONE 7(4): e35978. [CrossRef] [PubMed] [Google Scholar]
- Monteiro CA, Paulino C, Jacinto R, Serrão EA, Pearson GA. 2016. Temporal windows of reproductive opportunity reinforce species barriers in a marine broadcast spawning assemblage. Sci Rep 6: 29198. [CrossRef] [PubMed] [Google Scholar]
- Muhlin JF, Brawley SH. 2009. Recent versus relic: discerning the genetic signature of Fucus vesiculosus (Heterokontophyta; Phaeophyceae) in the northwestern Atlantic. Phycol Soc Am 837: 828–837. [CrossRef] [Google Scholar]
- Muhlin JF, Engel CR, Stessel R, Weatherbee RA, Brawley SH. 2008. The influence of coastal topography, circulation patterns, and rafting in structuring populations of an intertidal alga. Mol Ecol 17: 1198–1210. [CrossRef] [PubMed] [Google Scholar]
- Müller R, Laepple T, Bartsch I, Wiencke C. 2009. Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Bot Mar 52(6): 617–638. [Google Scholar]
- Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590. [PubMed] [Google Scholar]
- Neiva J, Pearson GA, Valero M, Serrão EA. 2012. Fine-scale genetic breaks driven by historical range dynamics and ongoing density-barrier effects in the estuarine seaweed Fucus ceranoides L. BMC Evol Biol 12: 78. [CrossRef] [PubMed] [Google Scholar]
- Neiva J, Serrão EA, Assis J, et al. 2016. Climate oscillations, range shifts and phylogeographic patterns of North Atlantic Fucaceae. In: Hu ZM, Fraser C, eds. Seaweed phylogeography. Netherlands: Springer, pp. 279–308. [CrossRef] [Google Scholar]
- Nicastro KR, Zardi GI, Teixeira S, Neiva J, Serrão EA, Pearson GA. 2013. Shift happens: trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus. BMC Biol 11: 6. [CrossRef] [PubMed] [Google Scholar]
- Perrin C, Daguin C, van de Vliet M, Engel CR, Pearson GA, Serrão EA. 2007. Implications of mating system for genetic diversity of sister algal species: Fucus spiralis and Fucus vesiculosus (Heterokontophyta, Phaeophyceae). Eur J Phycol 42: 219–230. [CrossRef] [Google Scholar]
- Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA. 2013. Marine taxa track local climate velocities. Science 341(6151): 1239–1242. [CrossRef] [PubMed] [Google Scholar]
- Poloczanska ES, Brown CJ, Sydeman WJ, et al. 2013. Global imprint of climate change on marine life. Nat Clim Chang 3(10): 919–925. [CrossRef] [Google Scholar]
- Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959. [Google Scholar]
- Provan J. 2013. The effects of past, present and future climate change on range-wide genetic diversity in northern North Atlantic marine species. Front Biogeogr 5(1). [PubMed] [Google Scholar]
- Puillat I, Lazure P, Jégou AM, Lampert L, Miller P. 2004. Hydrographical variability on the French continental shelf of the Bay of Biscay during the 1190s. Cont Shelf Res 24: 1143–1163. [CrossRef] [Google Scholar]
- Puillat I, Lazure P, Jégou AM, Lampert L, Miller P. 2006. Mesoscale hydrological variability induced by northwesterly wind of the French continental shelf of the Bay of Biscay. Sci Mar 70: 15–26. [CrossRef] [Google Scholar]
- Pujol B, Pannell JR. 2008. Reduced responses to selection after species range expansion. Science 321(5885): 96–96. [CrossRef] [PubMed] [Google Scholar]
- Pujol B, Zhou SR, Vilas JS, Pannell JR. 2009. Reduced inbreeding depression after species range expansion. Proc Natl Acad Sci U S A 106(36): 15379–15383. [CrossRef] [PubMed] [Google Scholar]
- Robuchon M, Le Gall L, Mauger S, Valero M. 2014. Contrasting genetic diversity patterns in two sister kelp species co-distributed along the coast of Brittany, France. Mol Ecol 23(11): 2669–2685. [CrossRef] [PubMed] [Google Scholar]
- Saada G, Nicastro KR, Jacinto R, et al. 2016. Taking the heat: distinct vulnerability to thermal stress of central and threatened peripheral lineages of a marine macroalga. Divers Distrib 22(10): 1060–1068. [CrossRef] [Google Scholar]
- Salomon JC, Breton M. 1993. An atlas of long term currents in the Channel. Oceanol Acta 16: 439–448. [Google Scholar]
- Selkoe KA, Watson JR, White C, et al. 2010. Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol Ecol 19: 3708–3726. [CrossRef] [PubMed] [Google Scholar]
- Serrão EA, Kautsky L, Lifvergren T, Brawley SH. 1997. Gamete dispersal and pre-recruitment mortality in Baltic Fucus vesiculosus. Phycology 36: 101–102. [Google Scholar]
- Sivasundar A, Palumbi SR. 2010. Life history, ecology and the biogeography of strong genetic breaks among 15 species of Pacific rockfish, Sebastes. Mar Biol 157(7): 1433–1452. [CrossRef] [Google Scholar]
- Slatkin M. 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139(1): 457–462. [Google Scholar]
- Somero GN. 2010. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213(6): 912–920. [CrossRef] [PubMed] [Google Scholar]
- Sorte CJ, Williams SL, Carlton JT. 2010. Marine range shifts and species introductions: comparative spread rates and community impacts. Glob Ecol Biogeogr 19(3): 303–316. [CrossRef] [Google Scholar]
- Spalding MD, Fox HE, Allen GR, et al. 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57: 573–583. [CrossRef] [Google Scholar]
- Stockwell CA, Hendry AP, Kinnison MT. 2003. Contemporary evolution meets conservation biology. Trends Ecol Evol 18(2): 94–101. [CrossRef] [Google Scholar]
- Storey JD. 2002. A direct approach to false discovery rates. J R Stat Soc Ser B Stat Methodol 64: 479–498. [CrossRef] [MathSciNet] [Google Scholar]
- Tatarenkov A, Bergström L, Jönsson RB, Serrão EA, Kautsky L, Johannesson K. 2005. Intriguing asexual life in marginal populations of the brown seaweed Fucus vesiculosus. Mol Ecol 14(2): 647–651. [CrossRef] [PubMed] [Google Scholar]
- Teixeira S, Pearson GA, Candeias R, Madeira C, Valero M, Serrão, EA. 2016. Lack of fine-scale genetic structure and distant mating in natural populations of Fucus vesiculosus. Mar Ecol Prog Ser 544: 131–142. [CrossRef] [Google Scholar]
- Tellier F, Meynard AP, Correa JA, Faugeron S, Valero M. 2009. Phylogeographic analyses of the 30 °S south-east Pacific biogeographic transition zone establish the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: Vicariance or parapatry? Mol Phylogenetics Evol 53(3): 679–693. [CrossRef] [Google Scholar]
- Toonen RJ, Hughes S. 2001. Increased Throughput for Fragment Analysis on ABI Prism 377 Automated Sequencer Using a Membrane Comb and STRand Software. Biotechniques 31: 1320–1324. [PubMed] [Google Scholar]
- Valero M, Destombe C, Mauger S, et al. 2011. Using genetic tools for sustainable management of kelps: a literature review and the example of Laminaria digitata. Cah Biol Mar 52(4): 467. [Google Scholar]
- van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. 2004. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535–538. [CrossRef] [Google Scholar]
- Wallace AR, Klein AS, Mathieson AC. 2004. Determining the affinities of salt marsh fucoids using microsatellite markers: evidence of hybridization and introgression between two species of Fucus (Phaeophyceae) in a Maine estuary. J Phycol 40: 1013–1027. [CrossRef] [Google Scholar]
- Weir B, Cockerham C, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38(6): 1358–1370. [Google Scholar]
- Wernberg T, Russell BD, Thomsen MS, et al. 2011. Seaweed communities in retreat from ocean warming. Curr Biol 21(21): 1828–1832. [CrossRef] [PubMed] [Google Scholar]
- Williams ST, Benzie JAH. 1998. Evidence of a biogeographic break between populations of a high dispersal starfish: congruent regions within the Indo-West Pacific defined by color morphs, mtDNA, and allozyme data. Evolution: 87–99. [Google Scholar]
- Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G. 2008. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol 6(12): e325. [CrossRef] [PubMed] [Google Scholar]
- Zacherl D, Gaines SD, Lonhart SI. 2003. The limits to biogeographical distributions: insights from the northward range extension of the marine snail, Kelletia kelletii (Forbes, 1852). J Biogeogr 30(6): 913–924. [CrossRef] [Google Scholar]
- Zardi GI, Nicastro KR, Cánovas F, Costa JF, Serrão EA, Pearson GA. 2011. Adaptive traits are maintained on steep selective gradients despite gene flow and hybridization in the intertidal zone. PLoS ONE 6(6): e19402. [CrossRef] [PubMed] [Google Scholar]
- Zardi GI, Nicastro KR, McQuaid CD, et al. 2015a. Intraspecific genetic lineages of a marine mussel show behavioural divergence and spatial segregation over a tropical/subtropical biogeographic transition. BMC Evol Biol 15(1): 100. [CrossRef] [PubMed] [Google Scholar]
- Zardi GI, Nicastro KR, Serrão EA, Jacinto R, Monteiro CA, Pearson GA. 2015b. Closer to the rear edge: ecology and genetic diversity down the core-edge gradient of a marine macroalga. Ecosphere 6(2): 1–25. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.