Free Access
Aquat. Living Resour.
Volume 30, 2017
Article Number 25
Number of page(s) 8
Published online 27 July 2017
  • Ahsan ME, Sharker MR, Alam MA, Siddik MAB, Nahar A. 2014. Effects of addition of tilapia and periphyton substrates on water quality and abundance of plankton in freshwater prawn culture ponds. Int J Scient Technol Res 3(2): 272–278. [Google Scholar]
  • Albay M, Akçaalan R. 2008. Effects of water quality and hydrologic drivers on periphyton colonization on Sparganium erectum in two Turkish lakes with different mixing regimes. Environ Monit Assess 146: 171–181. [CrossRef] [PubMed] [Google Scholar]
  • APHA, American Water Works Association, Water Pollution Control Federation. 2012. Standard methods for the examination of water and wastewater, 22nd ed. Washington, DC: American Public Health Association, 1360 pp. [Google Scholar]
  • Asaduzzaman M, Wahab MA, Verdegem MCJ, Azim ME, Haque S, Salam MA. 2008. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture 280(1–4): 117–123. [CrossRef] [Google Scholar]
  • Asaduzzaman M, Wahab MA, Verdegem MCJ, et al. 2010. Effects of carbohydrate source for maintaining a high C:N ratio and fish driven re-suspension on pond ecology and production in periphyton based freshwater prawn farming systems. Aquaculture 301: 37–46. [CrossRef] [Google Scholar]
  • Ayyappan S. 1987. Investigations on the limonology and microbial ecology of a lentic habitat. Ph.D. Thesis, Bangalore University, Bangalore, 326 pp. [Google Scholar]
  • Azim ME, Wahab MA, van Dam AA, Beveridge MCM, Verdigem MCJ. 2001. The potential of periphyton-based culture of two Indian major carps, rohu Labeo rohita (Hamilton) and gonia Labeo gonius (Linnaeus). Aquac Res 32: 209–216. [CrossRef] [Google Scholar]
  • Azim ME, Wahab MA, van Dam AA, Beveridge MCM, Verdigem MCJ. 2005. Periphyton and aquatic production: an introduction. In: Azim ME, Vedegem MCJ, van Dam AA, Beveridge MCM, eds. Periphyton − ecology, exploitation and management. Cambridge: CABI Publishing, pp. 1–14. [Google Scholar]
  • Barbiero RP. 2000. A multi-lake comparison of epilithic diatom communities on natural and artificial substrates. Hydrobiologia 438: 157–170. [CrossRef] [Google Scholar]
  • Cantonati M, Spitale D. 2009. The role of environmental variables in structuring epiphytic and epilithic diatom assemblages in springs and streams of the Dolomiti Bellunesi National Park (south-eastern Alps). Fundam Appl Limnol: Arch Hydrobiol 174: 117–133. [CrossRef] [Google Scholar]
  • Caputi K, Buric Z, Olujic G. 2005. Vertical distribution of periphytic diatoms in the karstic Zrmanja River (Croatia). Acta Bot Croat 64(2): 227–236. [Google Scholar]
  • Clarke KL, Gorley RN. 2006. Primer v6.1.10: user manual/tutorial PRIMER-E. Plymouth: Plymouth Routines in Multivariate Ecological Research. [Google Scholar]
  • Debenest T, Pinelli E, Coste M, et al. 2009. Sensitivity of freshwater periphytic diatoms to agricultural herbicides. Aquat Toxicol 93(1): 11–17. [CrossRef] [PubMed] [Google Scholar]
  • Dempster PW, Beveridge MCM, Baird DJ. 1993. Herbivory in the tilapia Oreochromis niloticus: a comparison of feeding rates on phytoplankton and periphyton. J Fish Biol 43: 385–392. [CrossRef] [Google Scholar]
  • Dharmaraj M, Manissery JK, Keshavanath P. 2002. Effects of a biodegradable substrate, sugarcane bagasse and supplemental feed on growth and production of fringe-lipped peninsula carp, Labeo fimbriatus (Bloch). Acta Ichthyol Piscat 32(2): 137–144. [CrossRef] [Google Scholar]
  • Edmondson WT, ed. 1959. Fresh-water biology, 2nd ed. New York and London: John Wiley & Sons, Inc., 1148 pp. [Google Scholar]
  • El-Sabaawi R, Harrison PJ. 2006. Interactive effects of irradiance and temperature on the photosynthetic physiology of the pennate diatom Pseudo-nitzschia granii (Bacillariophyceae) from the northeast subarctic Pacific. J Phycol 42: 778–785. [CrossRef] [Google Scholar]
  • Huchette SMH, Beveridge MCM. 2008. Technical and economical evaluation of periphyton-based cage culture of tilapia (Oreochromis niloticus) in tropical freshwater cages. Aquaculture 218(1–4): 219–234. [Google Scholar]
  • Jobgen AM, Palm A, Melkonian M. 2004. Phosphorus removal from eutrophic lakes using periphyton on submerged artificial substrata. Hydrobiologia 528: 123–142. [CrossRef] [Google Scholar]
  • Kaggwa RC, Kasule D, van Dam AA, Kansiime F. 2006. An initial assessment of the use of wetland plants as substrates for periphyton production in seasonal wetland, fish ponds in Uganda. Int J Ecol Environ Sci 32(1): 63–74. [Google Scholar]
  • Keshavanath P, Gangadhar B, Ramesh TJ, et al. 2001. Use of artificial substrates to enhance production of freshwater herbivorous fish in pond culture. Aquac Res 32: 189–197. [CrossRef] [Google Scholar]
  • Keshavanath P, Gangadhar B, Ramesh TJ, van Dam AA, Beveridge MCM, Verdegem MCJ. 2002. The effect of periphyton and supplemental feeding on the production of the indigenous carps Tor Khudree and Labeo fimbriatus. Aquaculture 213: 207–218. [CrossRef] [Google Scholar]
  • Maiti SK, Saha S, Adhikary S, Mukhopadhyay A, Saha T. 2014. Seasonal variation of phytoplankton diversity in relation to eutrophication of Mathura Beel, a floodplain lake in West Bengal, India. Asian J Water Environ Pollut 11(2): 37–44. [Google Scholar]
  • Milstein A, Peretz Y, Harpaz S. 2009. Culture of organic tilapia to market size in periphyton-based ponds with reduced feed inputs. Aquac Res 40(1): 55–59. [Google Scholar]
  • Nasser KMM, Sureshkumar S. 2014. Habitat wise variation in periphytic microalgal assemblages in the Vazhachal forest division of Chalakkudy River basin. Int J Curr Microbiol Appl Sci 3(6): 649–658. [Google Scholar]
  • Pandit AK, Farooq S, Shah JA. 2014. Periphytic algal community of Dal Lake in Kashmir Valley, India. Res J Environ Sci 8(7): 391–398. [CrossRef] [Google Scholar]
  • Pfeiffer TŽ, Mihaljević M, Špoljarić D, Stević F, Plenković-Moraj A. 2015. The disturbance-driven changes of periphytic algal communities in a Danubian floodplain lake. Knowl Manag Aquat Ecosyst 416: 02. [CrossRef] [EDP Sciences] [Google Scholar]
  • Philipose MT. 1967. Chlorococcales. New Delhi: Indian Council of Agricultural Research, 365 pp. [Google Scholar]
  • Philipose MT, Nandy AC, Chakraborty DP, Ramakrishna KV. 1976. Studies on the distribution in time and space of the periphyton pond at Cuttack., India, No. 21. Barrackpore, India: Central Inland Fish. Res. Inst., 43 pp. [Google Scholar]
  • Radhakrishnan MV, Sugumaran E. 2010. Fluctuations in zooplankton density on sugarcane bagasse substrate used for fish culture. American-Eurasian J Sci Res 5(2): 153–155. [Google Scholar]
  • Rai S, Yi Y, Wahab MdA, Bart AN, Diana JS. 2008. Comparison of rice straw and bamboo stick substrates in periphyton-based carp polyculture systems. Aquac Res 39(5): 464–473. [CrossRef] [Google Scholar]
  • Rimet F, Bouchez A. 2012. Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowl Manag Aquat Ecosyst 406: 01. [CrossRef] [EDP Sciences] [Google Scholar]
  • Rusanov AG, Khromov VM. 2016. Longitudinal distribution of periphyton algae in the Moskva river under eutrophication. Water Resour 43(3): 513–521. [CrossRef] [Google Scholar]
  • Saha S, Saha T, Basu P. 2016. Seasonal changes in zooplankton and macro-fauna populations of the east Calcutta wetland fish ponds. Proceedings of the Zoological Society, pp. 1–9. [Google Scholar]
  • Shankar KM, Mohan CV, Nandeesha MC. 1998. Promotion of substrate based microbial biofilm in ponds – a low cost technology to boost fish production. NAGA ICLARM Q 21(October–December): 18–22. [Google Scholar]
  • Sladecek V, Sladeckova A. 1964. Determination of the periphyton production by means of the glass slide method. Hydrobiologia 23(1–2): 125–158. [CrossRef] [Google Scholar]
  • Sladeckova A, Sladecek V. 1990. Periphyton in a stabilization system. Acta Hydrochim Hydrobiol 18(5): 557–562. [CrossRef] [Google Scholar]
  • van Dam AA, Beveridge MCM, Azim ME, Verdigem MCJ. 2002. The potential of fish production based on periphyton. Rev Fish Biol Fish 12: 1–31. [CrossRef] [Google Scholar]
  • Verdegem MCJ. 2002. The potential of fish production based on periphyton. Rev Fish Biol Fish 12: 1–31. [CrossRef] [Google Scholar]
  • Wahab MA, Azim ME, Ali MH, Beveridge MCM, Khan S. 1999. The potential of periphyton-based culture of the native major carp Culibaush, Labeo calbasu (Ham.). Aquac Res 30: 1–11. [Google Scholar]
  • Wang J, Jin P, Bishop P, Li F. 2011. Upgrade of three municipal wastewater treatments lagoons using a high surface area media. Front Environ Sci Eng China 6: 288–293. [Google Scholar]
  • Wetzel RG. 2001. Limnology, IIIrd ed. New York: Academic Press, p. 1006, ISBN-13: 9780127447605. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.