Free Access
Aquat. Living Resour.
Volume 30, 2017
Article Number 6
Number of page(s) 9
Published online 20 March 2017
  • Abolfathi M, Hajimoradloo A, Ghorbani R, Zamani A. 2012. Effect of starvation and refeeding on digestive enzyme activities in juvenile roach, Rutilus rutilus caspicus. Comp Biochem Physiol 161A: 166–173. [CrossRef] [Google Scholar]
  • Ali M, Nicieza A, Wootton RJ. 2003. Compensatory growth in fishes: a response to growth depression. Fish Fish 4: 147–190. [CrossRef] [Google Scholar]
  • Amornsakun T, Hassan AB, Ambak AB, Chiayvareesajja S. 1998. The culture of green catfish, Mystus nemurus (Cuv. & Val.). I: Feed and feeding scheme of larvae and juveniles. Songklanakarin J Sci Technol 20: 379–384. [Google Scholar]
  • AOAC. 2005. Official methods of analysis, 18th ed. Washington, DC: Association of Official Analytical Chemists. [Google Scholar]
  • APHA, AWWA, WPCF. 1998. Standard methods for the examination of water and wastewater, 20th ed. Washington, DC: American Public Health Association, American Water Works Association, Water Pollution Control Federation. [Google Scholar]
  • Areekijseree M, Engkagul A, Kovitvadhi U, et al. 2004. Temperature and pH characteristics of amylase and proteinase of adult freshwater pearl mussel, Hyriopsis (Hyriopsis) bialatus Simpson 1900. Aquaculture 234: 575–587. [CrossRef] [Google Scholar]
  • Bavčević L, Klanjšček T, Karamarko V, Aničić I, Legović T. 2010. Compensatory growth in gilthead sea bream (Sparus aurata) compensates weight, but not length. Aquaculture 301: 57–63. [CrossRef] [Google Scholar]
  • Carter CG, He ZY, Houlihan DF, McCarthy ID, Davidson I. 1995. Effect of feeding on the tissue free amino acid concentrations in rainbow trout (Oncorhynchus mykiss Walbaum). Fish Physiol Biochem 14: 153–164. [CrossRef] [PubMed] [Google Scholar]
  • Chakrabarti I, Gani MDA, Chaki KK, Sur R, Misra KK. 1995. Digestive enzymes in 11 freshwater teleost fish species in relation to food habit and niche segregation. Comp Biochem Physiol 112A: 167–177. [CrossRef] [Google Scholar]
  • Chan CR, Lee DN, Cheng YH, Hsieh DJY, Weng CF. 2008. Feed deprivation and refeeding on alterations of proteases in tilapia Oreochromis mossambicus. Zool Stud 47: 207–214. [Google Scholar]
  • Eshel A, Lindner P, Smirnoff P, Newton S, Harpaz S. 1993. Comparative study of proteolytic enzymes in the digestive tracts of the European sea bass and hybrid striped bass reared in freshwater. Comp Biochem Physiol 106A: 627–634. [CrossRef] [Google Scholar]
  • Foss A, Imsland AK, Vikingstad E, et al. 2009. Compensatory growth in Atlantic halibut: effect of starvation and subsequent feeding on growth, maturation, feed utilization and flesh quality. Aquaculture 290: 304–310. [CrossRef] [Google Scholar]
  • Furné M, García-Gallego M, Hidalgo MC, et al. 2008. Effect of starvation and refeeding on digestive enzyme activities in sturgeon (Acipenser naccarii) and trout (Oncorhynchus mykiss). Comp Biochem Physiol 149A: 420–425. [CrossRef] [Google Scholar]
  • Gaylord TG, Gatlin III DM. 2000. Assessment of compensatory growth in channel catfish Ictalurus punctatus R. and associated changes in body condition indices. J World Aquac Soc 31: 326–336. [Google Scholar]
  • Heide A, Foss A, Stefansson SO, et al. 2006. Compensatory growth and fillet crude composition in juvenile Atlantic halibut: effects of short term starvation periods and subsequent feeding. Aquaculture 261: 109–117. [CrossRef] [Google Scholar]
  • Jobling M, Johansen SJS. 1999. The lipostat, hyperphagia and catch-up growth. Aquac Res 30: 473–478. [CrossRef] [Google Scholar]
  • Jobling M, Meløy OH, Dos Santos J, Christiansen B. 1994. The compensatory growth response of the Atlantic cod: effects of nutritional history. Aquac Int 2: 75–90. [CrossRef] [Google Scholar]
  • Känkänen M, Pirhonen J. 2009. The effect of intermittent feeding on feed intake and compensatory growth of whitefish Coregonus lavaretus L. Aquaculture 288: 92–97. [CrossRef] [Google Scholar]
  • Kottelat M. 1998. Fishes of the Nam Theun and Xe Bangfai basins, Laos, with diagnoses of twenty-two new species (Teleostei: Cyprinidae, Balitoridae, Cobitidae, Coiidae and Odontobutidae). Ichthyol Explor Freshw 9: 1–128. [Google Scholar]
  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275. [CrossRef] [PubMed] [Google Scholar]
  • Matos E, Silva TS, Tiago T, Aureliano M, Dinis MT, Dias J. 2011. Effect of harvesting stress and storage conditions on protein degradation in fillets of farmed gilthead seabream (Sparus aurata): a differential scanning calorimetry study. Food Chem 126: 270–276. [CrossRef] [Google Scholar]
  • Mattila J, Koskela J, Pirhonen J. 2009. The effect of the length of repeated feed deprivation between single meals on compensatory growth of pikeperch Sander lucioperca. Aquaculture 296: 65–70. [CrossRef] [Google Scholar]
  • Mo WY, Lau RSS, Kwok ACK, Wong MH. 2016. Use of soybean meal and papain to partially replace animal protein for culturing three marine fish species: fish growth and water quality. Environ Pollut. DOI:10.1016/j.envpol.2016.07.059. [Google Scholar]
  • Morshedi V, Kochanian P, Bahmani M, et al. 2016. Cyclical short-term starvation and refeeding provokes compensatory growth in sub-yearling Siberian sturgeon, Acipenser baerii Brandt, 1869. Anim Feed Sci Technol. DOI:10.1016/j.anifeedsci.2016.10.005. [Google Scholar]
  • Näslund J, Johnsson J. 2016. State-dependent behavior and alternative behavioral strategies in brown trout (Salmo trutta L.) fry. Behav Ecol Sociobiol 70: 2111–2125. [CrossRef] [PubMed] [Google Scholar]
  • Ng HH, Rainboth W. 1999. The bagrid catfish genus Hemibagrus (Teleostei: Siluriformes) in central Indochina with a new species from the Mekong River. Raffles Bull Zool 47: 555–576. [Google Scholar]
  • Nicieza A, Álvarez D. 2009. Statistical analysis of structural compensatory growth: how can we reduce the rate of false detection? Oecologia 159: 27–39. [CrossRef] [PubMed] [Google Scholar]
  • Pujante IM, Martos-Sitcha JA, Moyano FJ, Ruiz-Jarabo I, Martínez-Rodríguez G, Mancera JM. 2015. Starving/refeeding processes induce metabolic modifications in thick-lipped grey mullet (Chelon labrosus Risso 1827). Comp Biochem Physiol 180B: 57–67. [CrossRef] [Google Scholar]
  • Rainboth WJ. 1996. FAO Species identification field guide for fishery purposes. Fishes of the Cambodian Mekong. Rome: FAO. [Google Scholar]
  • Romijn JA, Godfried MH, Hommes MJT, Endert E, Sauerwein HP. 1990. Decreased glucose oxidation during short-term starvation. Metabolism 39: 525–530. [CrossRef] [PubMed] [Google Scholar]
  • Rungruangsak K, Utne F. 1981. Effect of different acidified wet feeds on protease activities in the digestive tract and on growth rate of rainbow trout (Salmo gairdneri Richardson). Aquaculture 22: 67–79. [CrossRef] [Google Scholar]
  • Rungruangsak-Torrissen K. 2007. Digestive efficiency, growth and qualities of muscle and oocyte in Atlantic salmon (Salmo salar L.) fed on diets with krill meal as an alternative protein source. J Food Biochem 31: 509–540. [CrossRef] [Google Scholar]
  • Rungruangsak-Torrissen K, Moss R, Andresen LH, Berg A, Waagbo R. 2006. Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.). Fish Physiol Biochem 32: 7–23. [CrossRef] [PubMed] [Google Scholar]
  • Sacristán HJ, Nolasco-Soria H, López Greco LS. 2014. Effect of attractant stimuli, starvation period, and food availability on digestive enzymes in the redclaw crayfish Cherax quadricarinatus (Parastacidae). Aquat Biol 23: 87–99. [CrossRef] [Google Scholar]
  • Skipnes D, der Plancken IV, Loey AV, Hendrickx ME. 2008. Kinetics of heat denaturation of proteins from farmed Atlantic cod (Gadus morhua). J Food Eng 85: 51–58. [CrossRef] [Google Scholar]
  • Sunde J, Taranger GL, Rungruangsak-Torrissen K. 2001. Digestive protease activities and free amino acids in white muscle as indicators for feed conversion efficiency and growth rate in Atlantic salmon (Salmo salar L.). Fish Physiol Biochem 25: 335–345. [CrossRef] [Google Scholar]
  • Supannapong P, Pimsalee T, A-komol T, et al. 2008. Digestive enzymes and in vitro digestibility of different species of phytoplankton for culture of the freshwater pearl mussel, Hyriopsis (Hyriopsis) bialatus. Aquac Int 16: 437–453. [CrossRef] [Google Scholar]
  • Taşbozan O, Emre Y, Gökce MA, Erbaş C, Özcan F, Kıvrak E. 2016. The effects of different cycles of starvation and re-feeding on growth and body composition in rainbow trout (Oncorhynchus mykiss, Walbaum, 1792). J Appl Ichthyol 32: 583–588. [CrossRef] [MathSciNet] [Google Scholar]
  • Thalathiah S, Abas OF, Ibrahim T. 1988. First successful attempt to induce breed Mystus nemurus (C & V) at Batu Berendam, Melaka. In: Proceedings of the 11th Malaysian Society of Animal Production Annual Conference. Serdang: Malaysian Society of Animal Production, pp. 189–193. [Google Scholar]
  • Thalathiah S, Ibrahim T, Mansor A. 1992. Induced spawning of Mystus nemurus (C & V) using heteroplastic pituitary extract, HCG and an analog of LHRH. In: Proceedings of Fisheries Research Seminar 1989. Kuala Lumpur: Department of Fisheries, pp. 185–188. [Google Scholar]
  • Tian X, Qin JG. 2003. A single phase of food deprivation provoked compensatory growth in barramundi Lates calcarifer. Aquaculture 224: 169–179. [CrossRef] [Google Scholar]
  • Tian X, Fang J, Dong S. 2010. Effects of starvation and recovery on the growth, metabolism and energy budget of juvenile tongue sole (Cynoglossus semilaevis). Aquaculture 310: 122–129. [CrossRef] [Google Scholar]
  • Thongprajukaew K, Kovitvadhi U, Kovitvadhi S, Engkagul A, Rungruangsak-Torrissen K. 2013. Evaluation of growth performance and nutritional quality of diets using enzymatic markers and in vitro digestibility in Siamese fighting fish (Betta splendens Regan, 1910). Afr J Biotechnol 12: 1689–1702. [Google Scholar]
  • Thongprajukaew K, Rodjaroen S, Yoonram K, et al. 2015. Effects of dietary modified palm kernel meal on growth, feed utilization, radical scavenging activity, carcass composition and muscle quality in sex reversed Nile tilapia (Oreochromis niloticus). Aquaculture 439: 45–52. [CrossRef] [Google Scholar]
  • Urbinati EC, Sarmiento SJ, Takahashi LS. 2014. Short-term cycles of feed deprivation and refeeding promote full compensatory growth in the Amazon fish matrinxã (Brycon amazonicus). Aquaculture 433: 430–433. [CrossRef] [Google Scholar]
  • van Dijk PLM, Staaks G, Hardewig I. 2002. The effect of fasting and refeeding on temperature preference, activity and growth of roach, Rutilus rutilus. Oecologia 130: 496–504. [CrossRef] [PubMed] [Google Scholar]
  • van Dijk PLM, Hardewig I, Hölker F. 2005. Energy reserves during food deprivation and compensatory growth in juvenile roach: the importance of season and temperature. J Fish Biol 66: 167–181. [CrossRef] [Google Scholar]
  • Wang N, Hayward RS, Noltie DB. 1998. Effect of feeding frequency on food consumption, growth, size variation, and feeding pattern of age-0 hybrid sunfish. Aquaculture 165: 261–267. [CrossRef] [Google Scholar]
  • Weatherley AH, Gill HS. 1981. Recovery growth following periods of restricted rations and starvation in rainbow trout Salmo gairdneri Richardson. J Fish Biol 18: 195–208. [CrossRef] [Google Scholar]
  • Winkler UK, Stuckmann M. 1979. Glycogen, hyaluronate and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138: 663–670. [PubMed] [Google Scholar]
  • Yarmohammadi M, Shabani A, Pourkazemi M, et al. 2013. Effects of starvation and re-feeding on compensatory growth performance, plasma metabolites and IGF-I gene expression of Persian sturgeon (Acipenser persicus, Borodin 1897). Iranian J Fish Sci 12: 465–483. [Google Scholar]
  • Yun L, Zhi-Qiang Z, Ortegón O, Qin Y. 2012. Effects of short-term starvation and refeeding on the survival, and RNA/DNA and RNA/protein ratios in rock carp (Procypris rabuadi) larvae. Acta Hydrobiol. Sin. 36: 674–681. [Google Scholar]
  • Zaldúa N, Naya DE. 2014. Digestive flexibility during fasting in fish: a review. Comp Biochem Physiol 169A: 7–14. [CrossRef] [Google Scholar]
  • Zhu X, Xie S, Zou Z, et al. 2004. Compensatory growth and food consumption in gibel carp, Carassius auratus gibelio, and Chinese longsnout catfish, Leiocassis longirostris, experiencing cycles of feed deprivation and refeeding. Aquaculture 241: 235–247. [CrossRef] [Google Scholar]
  • Zweig RD, Morton JD, Stewart MM. 1999. Source water quality for aquaculture: a guide for assessment. Washington, DC: The World Bank. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.