Free Access
Issue
Aquat. Living Resour.
Volume 29, Number 4, October-December 2016
Article Number 404
Number of page(s) 6
DOI https://doi.org/10.1051/alr/2016035
Published online 22 December 2016
  • Aranishi F., Okimoto T., 2005, Sequence polymorphism in a novel noncoding region of Pacific oyster mitochondrial DNA. J. Appl. Genet. 46, 201–206. [PubMed] [Google Scholar]
  • Bandelt H., Forster P., Röhl A., 1999, Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48. [CrossRef] [PubMed] [Google Scholar]
  • Batista F.M., Leitão A., Fonseca V. G., Ben-Hamadou R., Ruano F., Henriques M.A., Guedes-Pinto H., Boudry P., 2007, Individual relationship between aneuploidy of gill cells and growth rate in the cupped oysters Crassostrea angulata, C. gigas and their reciprocal hybrids. J. Exp. Mar. Biol. Ecol. 352, 226–233. [CrossRef] [Google Scholar]
  • Batista F.M., Leitão A., Huvet A., Lapègue S., Heurtebise S., Boudry P., 2009, The taxonomic status and origin of the Portuguese oyster Crassostrea angulata (Lamark, 1819). Special Edition of the Proceedings of the 1st & 2nd International Oyster Symposiums 24, pp. 5–13. [Google Scholar]
  • Boudry P., Heurtebise S., Collet B., Cornette F., Gérard. A., 1998, Differentiation between populations of the Portuguese oyster, Crassostrea angulata (Lamark) and the Pacific oyster, Crassostrea gigas (Thunberg) revealed by mtDNA RFLP analysis. J. Exp. Mar. Biol. Ecol. 226, 279-291. [CrossRef] [Google Scholar]
  • Boxer C.R., 1969, The Portuguese seaborne empire, 1415–1825, [1st American ed.], A.A. Knopf, New York, p. 426. [Google Scholar]
  • Buroker N.E., Hershberger W.K., Chew K.K., 1979, Population genetics of the family Ostreidae. I. Intraspecific studies of Crassostrea gigas and Saccostrea commercialis. Mar. Biol. 54, 157–169. [CrossRef] [Google Scholar]
  • Comps M., 1988, Epizootic diseases of oysters associated with viral infections. In: Fisher, W.S. (Ed.), Disease processes in marine bivalve molluscs. American Fisheries Society Special Publication Bethesda, MD 8, pp. 23–37. [Google Scholar]
  • Cross I., Rebordinos L., Diaz E., 2006, Species identification of Crassostrea and Ostrea oysters by polymerase chain reaction amplification of the 5S rRNA gene. J. AOAC Int. 89, 144–148. [PubMed] [Google Scholar]
  • EFSA, 2010, EFSA Panel on Animal Health and Welfare (AHAW); scientific opinion on the increased mortality events in Pacific oyster (Crassostrea gigas). EFSA J. 8, 1894. [Google Scholar]
  • Excoffier L., Laval G., Schneider S., 2005, Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. 1, 47–50. [Google Scholar]
  • Hsiao S.-T., Chuang S.-C., Chen K.-S., Ho P.-H., Wu C.-L., Chen C.A., 2016, DNA barcoding reveals that the common cupped oyster in Taiwan is the Portuguese oyster Crassostrea angulata (Ostreoida; Ostreidae), not C. gigas. Scientific Reports 6: 34057. [CrossRef] [PubMed] [Google Scholar]
  • Fabioux C., Huvet A., Lapègue S., Heurtebise S., Boudry P., 2002, Past and present geographical distribution of populations of Portuguese (Crassostrea angulata) and Pacific (C. gigas) oysters along the European and north African Atlantic coasts. Haliotis 31, 33–44. [Google Scholar]
  • Fu Y.X., 1997, Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925. [PubMed] [Google Scholar]
  • Gutiérrez-Zugasti I., Andersen S. H., Araújo A.C., Dupont C., Milner N., Monge-Soares A.M., 2011, Shell midden research in Atlantic Europe: State of the art, research problems and perspectives for the future. Quaternary International 239, 70e85. [Google Scholar]
  • Hall T.A., 1999, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98. [Google Scholar]
  • Huvet A., Lapègue S., Magoulas A., Boudry P., 2000, Mitochondrial and nuclear DNA phylogeography of Crassostrea angulata, the Portuguese oyster endangered in Europe. Conserv. Gen. 1, 251–262. [CrossRef] [Google Scholar]
  • Huvet A., Gérard A., Ledu C., Phélipot P., Heurtebise S., Boudry P., 2002, Is fertility of hybrids enough to conclude that the oysters Crassostrea gigas and Crassostrea angulata are the same species? Aquat. Living Resour. 15, 45–52. [CrossRef] [EDP Sciences] [Google Scholar]
  • Huvet A., Fabioux C., McCombie H., Lapègue S., Boudry P., 2004, Natural hybridization between genetically differential populations of Crassostrea gigas and C. angulata highlighted by sequence variation in flanking regions of a microsatellite locus. Mar. Ecol. Prog. Ser. 272, 141–152. [CrossRef] [Google Scholar]
  • Imai T., Sakai S., 1961, Study of breeding of Japanese oyster, Crassostrea gigas. Tohoku J. Agric. Res. 12, 125–171. [Google Scholar]
  • Lallias D., Boudry P., Batista F.M., Beaumont A., King J.W., Turner J.R., Lapègue S., 2015, Invasion genetics of the Pacific oyster Crassostrea gigas in the British Isles inferred from microsatellite and mitochondrial markers. Biol. Invasions 17, 2581–2595. [CrossRef] [Google Scholar]
  • Lapègue S., Batista F.M., Heurtebise S., Yu Z., Boudry P., 2004, Evidence for the presence of the Portuguese oyster, Crassostrea angulata, in Northern China. J. Shellfish Res. 23, 759–763. [Google Scholar]
  • López-Flores I., Hérran R., Garrido-Ramos M.A., Boudry P., Ruiz-Rejón C., Ruiz-Rejón M., 2004, The molecular phylogeny of oysters based on a satellite DNA related to transposons. Gene 339, 181–188. [CrossRef] [PubMed] [Google Scholar]
  • Mathers N.F., Wilkins N.P., Walne P.R., 1974, Phosphoglucose isomerase and esterase phenotypes in Crassostrea angulata and C. gigas. Biochem. System. Ecol. 2, 93–96. [CrossRef] [Google Scholar]
  • Menzel R.W., 1974, Portuguese and Japanese oysters are the same species. J. Fisheries Res. Board Canada 31, 453–456. [CrossRef] [Google Scholar]
  • Moehler J., Wegner K.M., Reise K., Jacobsen S., 2011, Invasion genetics of Pacific oyster Crassostrea gigas shaped by aquaculture stocking practices. J. Sea Res. 66, 256–262. [CrossRef] [Google Scholar]
  • O’Foighil D., Gaffney P.M., Wilbur A.E., Hilbish T.J., 1998, Mitochondrial cytochrome oxidase I gene sequences support an Asian origin for the Portuguese oyster Crassostrea angulata. Mar. Biol. 131, 497–503. [CrossRef] [Google Scholar]
  • Qin J., Huang Z., Chen J., Zou Q., You W., Ke C., 2012, Sequencing and de novo analysis of Crassostrea angulata (Fujian Oyster) from 8 different developing phases using 454 GSFlx. PLoS One 7, e43653. [CrossRef] [PubMed] [Google Scholar]
  • Ramos-Onsins S.E., Rozas J., 2002, Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092–2100. [PubMed] [Google Scholar]
  • Ranson G., 1960, Les prodissoconques (coquilles larvaires) des ostréides vivants. Bull. Inst. Océanogr. Monaco 1, 1–41. [Google Scholar]
  • Ren J., Liu X., Jiang F., Guo X., Liu B., 2010, Unusual conservation of mitochondrial gene order in Crassostrea oysters: evidence for recent speciation in Asia. BMC Evol. Biol. 10, 394. [CrossRef] [PubMed] [Google Scholar]
  • Ren J., Hou Z., Wang H., Sun M.A., Liu X., Liu B., Guo, X., 2016, Intraspecific variation in mitogenomes of five Crassostrea species provides insight into oyster diversification and speciation. Mar. Biotechnol. 18, 242–254. [CrossRef] [Google Scholar]
  • Rozas J., Sanchez-DelBarrio J.C., Messeguer X., Rozas R., 2003, DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497. [CrossRef] [PubMed] [Google Scholar]
  • Seebens H., Gastner M., Blasius B., 2013, The risk of marine bioinvasion caused by global shipping. Ecology Letters 16(6), 782–790. [CrossRef] [PubMed] [Google Scholar]
  • Sekino M., Yamashita H., 2013, Mitochondrial DNA barcoding for Okinawan oysters: a cryptic population of the Portuguese oyster Crassostrea angulata in Japanese waters. Fish. Sci. 79, 61–76. [CrossRef] [Google Scholar]
  • Simberloff D., Martin J.-L., Genovesi P., Maris V., Wardle D.A., Aronson J., Courchamp F., Galil B., García-Berthou E., Pascal M., Pyšek P., Sousa R., Tabacchi E., Vila M., 2013, Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66. [CrossRef] [PubMed] [Google Scholar]
  • Steinrücken M., Birkner M., Blath J., 2013, Analysis of DNA sequence variation within marine species using Beta-coalescents. Theor. Popul. Biol. 87, 15-2-4. [CrossRef] [PubMed] [Google Scholar]
  • Tajima F., 1989, Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595. [PubMed] [Google Scholar]
  • Thompson J.D., Higgins D.G., Gibson T.J., 1994, CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680. [CrossRef] [PubMed] [Google Scholar]
  • Wang H., Qian L., Liu X., Zhang G., Guo X., 2010, Classification of a common cupped oyster from southern China. J. Shellfish Res. 29, 857–866. [CrossRef] [Google Scholar]
  • Xia J., Yu Z., Kong X., 2009, Identification of seven Crassostrea oysters from the South China Sea using PCR-RFLP analysis. J. Mollusc. Stud. 75, 139–146. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.