Free Access
Issue
Aquat. Living Resour.
Volume 29, Number 3, July-September 2016
Article Number 301
Number of page(s) 9
DOI https://doi.org/10.1051/alr/2016024
Published online 10 October 2016
  • Au W.W., Benoit-Bird K.J., 2003, Acoustic backscattering by Hawaiian lutjanid snappers. II. Broadband temporal and spectral structure. J. Acoust. Soc. Am. 114, 2767–2774. [CrossRef] [PubMed] [Google Scholar]
  • Barbeaux S.J., Horne J.K., Dorn M.W., 2013, Characterizing walleye pollock (Theragra chalcogramma) winter distribution from opportunistic acoustic data. ICES J. Mar. Sci. 70, 1162–1173. [CrossRef] [Google Scholar]
  • Benoit-Bird K.J., Au W.W., Kelley C.D., 2003, Acoustic backscattering by Hawaiian lutjanid snappers. I. Target strength and swimbladder characteristics. J. Acoust. Soc. Am., 114, 2757–2766. [CrossRef] [PubMed] [Google Scholar]
  • Blackman S.S., Norwood, Massachusetts: Artech House Inc., 1986, Multiple-Target Tracking with Radar Applications, 464 pp. [Google Scholar]
  • Brown I., Sumpton W., McLennan M., Mayer D., Campbell M., Kirkwood J., Butcher A., Halliday I., Mapleston A., Welch D., Begg G.A., Sawynok B., 2010, An improved technique for estimating short-term survival of released line-caught fish, and an application comparing barotrauma-relief methods in red emperor (Lutjanus sebae Cuvier 1816), J. Exp. Mar. Biol. Ecol. 385, 1–7. [CrossRef] [Google Scholar]
  • Clay C.S., Horne J.K. 1994, Acoustic models of fish: The Atlantic cod (Gadus morhua). J. Acoust. Soc. Am. 96, 1661–1668. [CrossRef] [Google Scholar]
  • Demer D.A., 2004, An estimate of error for the CCAMLR 2000 survey estimate of krill biomass. Deep Sea Res. Part II Top. Stud. Oceanogr. 51, 1237–1251. [CrossRef] [Google Scholar]
  • Demer D.A., et al. 2015, Calibration of acoustic instruments. ICES CRR No. 326. 133 p. [Google Scholar]
  • Echoview Software Pty Ltd, 2015, Echoview software, version 6.1.44. Echoview Software Pty Ltd, Hobart, Australia [Google Scholar]
  • Edwards J.I., Armstrong F., 1981, Measurements of the target strength of live herring and mackerel. ICES CM/ B:26, pp. 5–11. [Google Scholar]
  • Fässler S.M.M., Brierley A.S., Fernandes P.G., 2009, A Bayesian approach to estimating target strength. ICES J. Mar. Sci. 66, 1197–1204. [CrossRef] [Google Scholar]
  • Fässler S.M.M., O’Donnell C.Jech J.M., 2013, Boarfish (Capros aper) target strength modelled from magnetic resonance imaging (MRI) scans of its swimbladder. ICES J. Mar. Sci. 70, 1451–1459. [CrossRef] [Google Scholar]
  • Foote K.G., 1979, On representing the length dependence of acoustic target strengths of fish. J. Fish. Board Can. 36, 1490–1496. [CrossRef] [Google Scholar]
  • Foote K.G., 1980a, Averaging of fish target strength functions. J. Acoust. Soc. Am. 67, 504–515. [CrossRef] [Google Scholar]
  • Foote K.G., 1980b, Importance of the swimbladder in acoustic scattering by fish: A comparison of Gadoid and mackerel target strengths. J. Acoust. Soc. Am. 67, 2084–2089. [CrossRef] [Google Scholar]
  • Foote K.G., Francis D.T.I., 2002, Comparing Kirchhoff-approximation and boundary-element models for computing gadoid target strengths. J. Acoust. Soc. Am. 111, 1644–1654. [CrossRef] [PubMed] [Google Scholar]
  • Gauthier S., Rose G.A., 2001, Target Strength of encaged Atlantic redfish (Sebastes spp.). ICES J. Mar. Sci. 58, 562–568. [CrossRef] [Google Scholar]
  • Hammond T., 1997, A Bayesian interpretation of target strength data from the Grand Banks. Can. J. Fish. Aquat. Sci. 54, 2323–2333. [CrossRef] [Google Scholar]
  • Hartig F., Dyke J., Hickler T., Higgins S.I., O’Hara R.B., Scheiter S., Huth A., 2012, Connecting dynamic vegetation models to data – an inverse perspective. J. Biogeogr. 39, 2240–2252. [CrossRef] [Google Scholar]
  • Hazen E.L., Horne J.K., 2003, A method for evaluating the effects of biological factors on fish target strength. ICES J. Mar. Sci. 60, 555–562. [CrossRef] [Google Scholar]
  • Hazen E.L., Horne J.K., 2004, Comparing the modelled and measured target-strength variability of walleye pollock, Theragra chalcogramma. ICES J. Mar. Sci. 61, 363–377. [CrossRef] [Google Scholar]
  • Henderson M.J., Horne J.K., 2007, Comparison of in situ, ex situ, and backscatter model estimates of Pacific hake (Merluccius productus) target strength. Can. J. Fish. Aqua. Sci. 64, 1781–1794. [CrossRef] [Google Scholar]
  • Horne J.K., Walline P.D., Jech J.M., 2000, Comparing acoustic model predictions to in situ backscatter measurements of fish with dual-chambered swimbladders. J. Fish Biol. 57, 1105–1121. [CrossRef] [Google Scholar]
  • ICES, 2007, Collection of acoustic data from fishing vessels. ICES CRReport No. 287. 83 pp. [Google Scholar]
  • Kloser R.J., Horne J.K., 2003, Characterizing uncertainty in target-strength measurements of a deepwater fish: orange roughy (Hoplostethus atlanticus). ICES J. Mar. Sci. 60, 516–523. [CrossRef] [Google Scholar]
  • Korneliussen R.J., Diner N., Ona E., Berger L., Fernandes P.G., 2008, Proposals for the collection of multifrequency acoustic data. ICES J. Mar. Sci. 65, 982–994. [CrossRef] [Google Scholar]
  • Love R.H., 1977, Target strength of an individual fish at any aspect. J. Acoust. Soc. Am. 62, 1397–1403. [CrossRef] [Google Scholar]
  • Macaulay G.J., 2002, Anatomically detailed acoustic scattering models of fish. Bioacoustics 12, 275–277. [CrossRef] [Google Scholar]
  • Macaulay G.J., Peña H., Fässler S.M.M., Pedersen G., Ona E., 2013, Accuracy of the Kirchhoff-approximation and Kirchhoff-Ray-Mode fish swimbladder acoustic scattering models. PLoS ONE 8, e64055. [CrossRef] [PubMed] [Google Scholar]
  • MacLennan D.N., 1990, Acoustical measurement of fish abundance. J. Acoust. Soc. Am. 87, 1–15. [CrossRef] [Google Scholar]
  • MacLennan D.N., Menz A., 1996, Interpretation of in situ target-strength data. ICES J. Mar. Sci. 53, 233–236. [CrossRef] [Google Scholar]
  • McAllister M.K., Kirkwood G.P., 1998, Bayesian stock assessment: a review and example application using the logistic model. ICES J. Mar. Sci. 55, 1031–1060. [CrossRef] [Google Scholar]
  • McCartney B.S., Stubbs A.R., 1971, Measurements of the acoustic target strengths of fish in dorsal aspect, including swimbladder resonance. J. Sound Vib. 15, 397–420. [CrossRef] [Google Scholar]
  • McClatchie S., Alsop J., Coombs R.F., 1996, A re-evaluation of relationships between fish size, acoustic frequency, and target strength. ICES J. Mar. Sci. 53, 780–791. [CrossRef] [Google Scholar]
  • Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E., 1953, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087. [NASA ADS] [CrossRef] [Google Scholar]
  • Nakken O., Olsen K., 1977, Target strength measurements of fish. [Google Scholar]
  • Newman S.J., Dunk I.J., 2002, Growth, age validation, mortality, and other population characteristics of the red emperor snapper, Lutjanus sebae (Cuvier, 1828), off the Kimberley Coast of North-Western Australia. Estuar. Coast. Shelf Sci. 55, 67–80. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Newman S.J., Wakefield C., Skepper C., Boddington D., Blay N., Jones R., Wallis D. 2014, North coast demersal fisheries status report. In: Status Reports of the Fisheries and Aquatic Resources of Western Australia 2013/14: The State of the Fisheries; Eds.: W.J. Fletcher and K. Santoro, (Department of Fisheries, Western Australia). [Google Scholar]
  • Ona E., 1990, Physiological factors causing natural variations in acoustic target strength of fish. J. Mar. Biol. Assoc. U. K. 70, 107–127. [CrossRef] [Google Scholar]
  • Ona E., 2001, Herring tilt angles, measured through target tracking. In Herring: Expectations for a New Millennium. Ed. by F. Funk, J. Blackburn, D. Hay, A. J. Paul, R. Stephenson, R. Toresen, and D. Witherell. University of Alaska, Sea Grant, AK-SG-01-04. Fairbanks. 800 p. [Google Scholar]
  • Ona E., 2003, An expanded target-strength relationship for herring. ICES J. Mar. Sci. 60, 493–499. [CrossRef] [Google Scholar]
  • Peña H., 2008, In situ target-strength measurements of Chilean jack mackerel (Trachurus symmetricus murphyi) collected with a scientific echosounder installed on a fishing vessel. ICES J. Mar. Sci. 65, 594–604. [CrossRef] [Google Scholar]
  • Peña H., Foote K.G., 2008, Modelling the target strength of Trachurus symmetricus murphyi based on high-resolution swimbladder morphometry using an MRI scanner. ICES J. Mar. Sci. 65, 1751–1761. [CrossRef] [Google Scholar]
  • R Core Team, 2016, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. [Google Scholar]
  • Reeder D.B., Jech J.M., Stanton T.K., 2004, Broadband acoustic backscatter and high-resolution morphology of fish: Measurement and modeling. J. Acoust. Soc. Am. 116, 747–761. [CrossRef] [PubMed] [Google Scholar]
  • Ryan T.E., Kloser R.J., 2004, Improving the precision of ES60 and EK60 echosounder applications. Rep. Work. Group Fish. Acoust. Sci. Technol. WGFAST 20–23. [Google Scholar]
  • Scoulding B., Chu D., Ona E., Fernandes P.G., 2015, Target strengths of two abundant mesopelagic fish species. J. Acoust. Soc. Am. 137, 989–1000. [CrossRef] [PubMed] [Google Scholar]
  • Simmonds J., MacLennan D., 2005, Fisheries acoustics: theory and practice. Blackwell Publishing, Oxford. 437 p. [Google Scholar]
  • Soule M., Barange M., Hampton J., 1995, Evidence of bias in estimates of target strength obtained with a split-beam echo-sounder. ICES J. Mar. Sci. 52, 139–144. [CrossRef] [Google Scholar]
  • Soule M., Barange M., Solli H., Hampton I., 1997, Performance of a new phase algorithm for discriminating between single and overlapping echoes in a split-beam echosounder. ICES J. Mar. Sci. 54, 934–938. [CrossRef] [Google Scholar]
  • Ye Z., 1997, Low-frequency acoustic scattering by gas-filled prolate spheroids in liquids. J. Acoust. Soc. Am. 101, 1945–1952. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.