Free Access
Issue
Aquat. Living Resour.
Volume 28, Number 2-4, April-December 2015
Page(s) 99 - 109
DOI https://doi.org/10.1051/alr/2016004
Published online 30 March 2016
  • Allen J.D., Pechenik J.A., 2010, Understanding the Effects of Low Salinity on Fertilization Success and Early Development in the Sand Dollar Echinarachnius parma. Biol. Bull. 218, 189–199. [Google Scholar]
  • Aguilera A., Souza-Egipsy V., Martín-Úriz P.S., Amils R., 2008, Extraction of extracellular polymeric substances from extreme acidic microbial biofilms. Appl. Microbiol. Biotechnol. 78, 1079–1088. [CrossRef] [PubMed] [Google Scholar]
  • Austin B., Austin D., Southerland R., Thompson F., Swings J., 2005, Pathogenicity of vibrios to rainbow trout (Oncothynchus mykiss, Walbaum) and Artemia nauplii. Environ. Microbiol. 7, 1488–1495. [CrossRef] [PubMed] [Google Scholar]
  • Bayne B.L., 1975, Aspects of physiological conditions inMytilus edulis L.,with special reference to the effects of oxygen tension and salinity. In: Gray, J.S., Christiansen, M.E. (Ed.), Proc. 9th Europ Mar. Biol. Symp. John Wiley and Sons Ltd., Chichester, pp. 331–349. [Google Scholar]
  • Bremer P.J., Geesey G.G., 1991, An evaluation of biofilm development utilizing non-destructive attenuated total reflectance Fourier transform infrared spectroscopy. Biofouling 3, 89–100. [CrossRef] [Google Scholar]
  • Brierley A.S., Kingsford K.J., 2009, Impacts of Climate Change on Marine Organisms and Ecosystems. Curr. Biol. 19, R602–R614. [CrossRef] [PubMed] [Google Scholar]
  • Caccamese S.M., Rastegar D.A., 1999, Chronic Diarrhea Associated with Vibrio alginolyticus in an Immunocompromised Patient. Clin. Infect. Dis., 29, 946–7. [CrossRef] [PubMed] [Google Scholar]
  • Cheng W., Juang F.M., Chen J.C., 2004, The immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus at different salinity levels. Fish Shellfish Immunol. 16, 295–306. [CrossRef] [PubMed] [Google Scholar]
  • Cheung H.Y., Sun S.Q., Ching B., Sreedhar W.M., Tanner P.A., 2000, Alterations in extracellular substances during the biofilm development of Pseudomonas aeruginosa on aluminium plates. J. Appl. Microbiol. 89, 100–106. [CrossRef] [PubMed] [Google Scholar]
  • Coteur G., Warnau M., Jangoux M., Dubois P, 2002, Reactive oxygen species (ROS) production by amoebocytes of Asterias rubens (Echinodermata). Fish. Shelfish. Immunol. 12, 187–200. [CrossRef] [Google Scholar]
  • Coteur G., Gillan D., Pernet Ph., Dubois Ph., 2005, Alteration of cellular immune responses in the seastar Asterias rubens following dietary exposure to cadmium. Aquat. Toxicol., 73, 418–421. [CrossRef] [PubMed] [Google Scholar]
  • Dave S.R., Desai H.B., 2006, Microbial diversity at marine salterns near Bhavnagar, Gujarat, India. Curr. Sci. 90, 497–500. [Google Scholar]
  • Davey M.E., O’Toole G.A., 2000, Microbial biofilms: from ecology to molecular genetics. Microboil. Mol. Biol. Rev. 64, 847–67. [CrossRef] [PubMed] [Google Scholar]
  • Di Bonaventura G., Stepanoviæ S., Picciani C., Pompilio A., Piccolomini R., 2007, Effect of environmental factors on biofilm formation by clinical Stenotrophomonas maltophilia isolates. Folia Microbiol. (Praha). 52, 86–90. [CrossRef] [PubMed] [Google Scholar]
  • Donlan R.M., Murga R., Bell M., Toscano C.M., Carr J.H., Novicki T.J., Zuckerman C., Corey L.C., Miller J.M., 2001, Protocol for detection of biofilms on needleless connectors attached to central venous catheters. J. Clin. Microbiol. 39, 750–753. [CrossRef] [PubMed] [Google Scholar]
  • Dufréne Y.F., 2002, Mini-review. Atomic force microscopy, a powerful tool in microbiology. J. Bacteriol. 184, 5205–5213. [CrossRef] [PubMed] [Google Scholar]
  • Feng D.Q., Yang L.F., Lu W.D., Yang S., 2007, Analysis of Protein Expression Profiles of Halobacillus dabanensis D-8T Under Optimal and High Salinity Conditions. Curr. Microbiol. 54, 20–26. [CrossRef] [PubMed] [Google Scholar]
  • Flemming H.C., Wingender J., 2002, Extracellular Polymeric Substances (EPS): Structural, Ecological and Technical aspects, In: Bitton G, Eds. Encyclopedia of environmental microbiology, John Wiley & Sons, New York, pp. 1223–1231. [Google Scholar]
  • Fukuda R, Ogawa H., Nagata T., Koike I., 1998, Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl. Environ. Microbiol. 64, 3352–3358. [PubMed] [Google Scholar]
  • Garrett T.R., Bhakoo M., Zhang Z., 2008, Bacterial adhesion and biofilms on surfaces. Prog. Natural Sci. 18, 1049–1056. [CrossRef] [Google Scholar]
  • Guerin J.L., Stickle W.B., 1992, Effects of salinity gradients on the tolerance and bioenergetics of juvenile blue crabs (Callinectes sapidus) from waters of different environmental salinities. Mar. Biol. 114, 391–396. [CrossRef] [Google Scholar]
  • Haldar S., Mody K.H., Jha B., 2011a, Abundance, diversity and antibiotics resistance pattern of Vibrio spp. in coral ecosystem of Kurusadai island, J. Basic Microbiol. 51, 153–162. [CrossRef] [Google Scholar]
  • Haldar S., Chatterjee S., Sugimoto N., Das S., Chowdhury N., Hinenoya A., Asakura M., Yamasaki S., 2011b, Identification of Vibrio campbellii isolated from diseased farm-shrimps from south India and establishment of its pathogenic potential in an Artemia model. Microbiology-SGM 157, 179–188. [CrossRef] [Google Scholar]
  • Helm D., Naumann D., 1995, Identification of some bacterial cell components by FTIR spectroscopy. FEMS Microbiology Lett. 126, 75–80. [CrossRef] [Google Scholar]
  • Jiao Y., Cody G.D., Harding A.K., Wilmes P., Schrenk M., Wheeler K.E., Banfield J.F., Thelen M.P., 2010, Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl Environ Microbiol 76(9), 2916–2922. [CrossRef] [PubMed] [Google Scholar]
  • Kamjumphol W., Chareonsudjai S., Chareonsudjai P., Wongratanacheewin S., Taweechaisupapong S., 2013, Environmental factors affecting burkholderia pseudomallei biofilm formation. Southeast Asian J. Trop. Med. Public Health 44, 72–81. [PubMed] [Google Scholar]
  • Kao C.H., 1997, Physiological significance of stress-induced changes in polyamines in plants. Bot. Bull. Acad. Sin. 38, 141–144. [Google Scholar]
  • Kavita K., Mishra A., Jha B., 2013, Extracellular polymeric substances from two biofilm forming Vibrio species: Characterization and applications. Carbohydr. Polym. 94, 882–88. [CrossRef] [PubMed] [Google Scholar]
  • Kjelleberg S., Lagercratz C., Marshall K.C., 1982, The effect of interfaces on small starved marine bacteria. Appl. Environ. Microbiol. 43, 1166–72. [PubMed] [Google Scholar]
  • Knobloch J.K., Bartscht K., Sabottke A., Rohde H., Feucht H.H., Mack D., 2001, Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J. Bacteriol. 183, 2624–33. [CrossRef] [PubMed] [Google Scholar]
  • Kolter R., Greenberg E.P., 2006, Microbial sciences: The superficial life of microbes. Nature 441, 300–302. [CrossRef] [PubMed] [Google Scholar]
  • Lal P., Sharma D., Pruthi P., Pruthi V., 2010, Exopolysaccharide analysis of biofilm- forming Candida albicans. J. Appl. Microbiol. 109, 128–136. [PubMed] [Google Scholar]
  • Lanwermeyera S.K., Xia C., Jakubovicsb N.S., Rickardc A.H., 2014, Microbial coaggregation: ubiquity and implications for biofilm development. Biofauling 30, 1235–1251. [CrossRef] [Google Scholar]
  • Lowry O.H., Rosenbrough N.J., Farr A.L., Randall R.J., 1951, Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275. [PubMed] [Google Scholar]
  • Ludwig T.G., Goldberg H.J.V., 1956, The Anthrone Method for the Determination of carbohydrates in Foods and in Oral Rinsing. J. Dent. Res. 35, 90–94. [CrossRef] [PubMed] [Google Scholar]
  • Mishra A., Jha B., 2009, Microbial Exopolysaccharides, In: Rosenberg E. et al., (Eds.), The Procaryotes-Applied Bacteriology and Biotechnology, Springer-Verlog, Berlin, Heidelberg, pp. 179–192. [Google Scholar]
  • Mogilnaya O.A., Lobova T.I., Kargatova T.V., Popova L.Y.U., 2005, Biofilm formation by bacterial associations under various salinities and copper ion stress. Biofouling 21, 247–255. [CrossRef] [PubMed] [Google Scholar]
  • Moldoveanu A.M., 2012, The Influence of Mytilus Extract on Biofilm Cells Attachment. Annals of the Romanian Society for Cell Biology, 17(1), 111. [Google Scholar]
  • O’Toole GA, Kolter R., 1998, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28, 449–61. [CrossRef] [PubMed] [Google Scholar]
  • Patel M., Baxi K., Dayma P., Upadhyay D., Parmar N., Kundu S., Haldar S., Mody K..H., Jha B., 2014, Assessment of Ground Water Quality with Respect to Bacteriological Contamination in Bhavnagar, Gujarat, India. Clean – Soil Air Water 42, 1351–1362. [CrossRef] [Google Scholar]
  • Patent No. EP 1877044 A2. N-acetylcysteine amide (nac amide) for the treatment of diseases and conditions associated with oxidative stress. [Google Scholar]
  • Pontarp M., Sjöstedt J., Per Lundberg P., 2013, Experimentally induced habitat filtering in marine bacterial communities. Mar. Ecol. Prog. Ser. 477, 77–86. [CrossRef] [Google Scholar]
  • Rao T.S., 2010, Comparative effect of temperature on biofilm formation in natural and modified marine environment. Aquat. Ecol. 44, 463–478. [CrossRef] [Google Scholar]
  • Resgalla Jr. C., Brasil Ed.S, Salomão L.C., 2007, The Effect of Temperature and Salinity on the Physiological Rates of the Mussel Perna perna (Linnaeus 1758). Braz. Arch. Biol. Technol. 50, 543–556. [CrossRef] [Google Scholar]
  • Romalde J.L., 2002, Photobacterium damselae subsp. piscicida: an integrated view of a bacterial fish pathogen. Int. Microbiol. 5, 3–9. [CrossRef] [PubMed] [Google Scholar]
  • Romling U., Sierralta W.D., Eriksson K., Normark S., 1998, Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol. Microbiol. 28, 249–64. [CrossRef] [PubMed] [Google Scholar]
  • Lebeer S., Verhoeven T.L.A., Vélez M.P., Vanderleyden J., Keersmaecker S.C.J.D., 2007, Impact of Environmental and Genetic Factors on Biofilm Formation by the Probiotic Strain Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 73, 6768–6775. [CrossRef] [PubMed] [Google Scholar]
  • Schmidt U, Chmel H, Cobbs C., 1979, Vibrio alginolyticus Infections in Humans. J Clin. Microbiol. 10, 666–668. [PubMed] [Google Scholar]
  • Shihora N. A., 2013, Isolation and characterizations of halotolerant bacteria and identification by FAME analysis. J. Appl Res. 3, 51-53. [Google Scholar]
  • Singh P.K., Parsek M.R., Greenberg E.P., Welsh M.J., 2002, A component of innate immunity prevents bacterial biofilm development. Nature 417, 552–555. [CrossRef] [PubMed] [Google Scholar]
  • Staats N., Winder B.D., Stal L.J., Mur L.R., 1999, Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navilcula salinarum. Eur. J. Phycol. 34, 161–169. [CrossRef] [Google Scholar]
  • Thyssen A., Grisez L., van Houdt R., Ollevier F., 1998, Phenotypic characterization of the marine pathogen Photobacterium damselae subsp. piscicida. Int. J. Syst. Bacteriol. 4, 1145–51. [CrossRef] [Google Scholar]
  • Vu B., Chen M., Crawford R.J., Ivanova E.P., 2009, Bacterial Extracellular Polysaccharides Involved in Biofilm Formation. Molecules 14, 2535–2554. [CrossRef] [PubMed] [Google Scholar]
  • White-Ziegler C.A., Um S., Perez N.M., Berns A.L., Malhowski A.J., Young S., 2008, Low temperature (23 oC) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K–12. Microbiology 154, 148–66. [CrossRef] [PubMed] [Google Scholar]
  • Yogesh, Haldar S., Paul P, Bhattacharya A., 2010, Polysulfone-Azo Composite Membrane: New Preparative Approach, Importance in Bactericidal and Biofilm Inhibition Activities. J. Appl. Polymer Sci. 115, 3710–3715. [CrossRef] [Google Scholar]
  • Zhang Z., Chen S.H., Wang S.M., Luo H.Y., 2011, Characterization of extracellular polymeric substances from biofilm in the process of starting-up a partial nitrification process under salt stress. Appl. Microbiol. Biotechnol. 89, 1563–1571. [CrossRef] [PubMed] [Google Scholar]
  • Zobell C.E., 1943, The effect of solid surfaces on bacterial activity. J. Bacteriol. 46, 39–56. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.