Free Access
Issue
Aquat. Living Resour.
Volume 24, Number 4, October-December 2011
Page(s) 411 - 424
Section Regular articles
DOI https://doi.org/10.1051/alr/2011149
Published online 24 November 2011
  • Arnaud-Haond S., Goyard E., Vonau V., Herbaut C., Prou J., Saulnier D., 2007, Pearl formation: persistence of the graft during the entire process of biomineralization. Mar. Biotechnol. 9, 113–116. [CrossRef] [PubMed] [Google Scholar]
  • Baronnet A., Cuif J.P., Dauphin Y., Farre B., Nouet J., 2008, Crystallization of biogenic Ca-carbonate within organo-mineral micro-domains. Structure of the calcite prisms of the pelecypod Pinctada margaritifera (Mollusca) at the submicron to nanometer ranges. Mineral. Mag. 72, 617–626. [CrossRef] [Google Scholar]
  • Cuif J.P., Ball A.D., Dauphin Y., Farre B., Nouet J., Perez-Huerta A., Salomé M., Williams C.T., 2008, Structural, mineralogical and biochemical diversity in the lower part of the pearl layer of cultivated seawater pearls from Polynesia. Microsc. Microanal. 14, 405–417. [PubMed] [Google Scholar]
  • Cuif J.P., Dauphin Y., Sorauf J.E., 2011, Biominerals and fossils through time. Cambridge University Press. [Google Scholar]
  • Cuif J.P., Dauphin Y., Doucet J., Salomé M., Susini J., 2003, XANES mapping of organic sulfate in three scleractinian coral skeletons. Geoch. Cosmoch. Acta, 67, 75–83. [CrossRef] [Google Scholar]
  • Dauphin Y., 2003, Soluble organic matrices of the calcitic prismatic shell layers of two pteriomorphid Bivalves: Pinna nobilis and Pinctada margaritifera. J. Biol. Chem. 278, 15168–15177. [CrossRef] [PubMed] [Google Scholar]
  • Dauphin Y., Cuif J.P., Doucet J., Salomé M., Susini J., Williams C.T., 2003a, In situ chemical speciation of sulfur in calcitic biominerals and the simple prism concept. J. Struct. Biol. 142, 272–280. [CrossRef] [PubMed] [Google Scholar]
  • Dauphin Y., Cuif J.P., Doucet J., Salomé M., Susini J., Williams C.T., 2003b, In situ mapping of growth lines in the calcitic prismatic layers of mollusc shells using X-ray absorption near-edge structure (XANES) spectroscopy at the sulphur edge. Mar. Biol. 142, 299–304. [Google Scholar]
  • Dauphin Y., Ball A.D., Cotte M., Cuif J.P., Meibom A., Salomé M., Susini J., Williams C.T., 2008, Structure and composition of the nacre – prism transition in the shell of Pinctada margaritifera (Mollusca, Bivalvia). Anal. Bioanal. Chem. 390, 1659–1169. [CrossRef] [PubMed] [Google Scholar]
  • Dauphin Y., Brunelle A., Cotte M., Cuif J.P., Farre B., Laprévote O., Meibom A., Salomé M., Williams C.T., 2010, A layered structure in the organic envelopes of the prismatic layer of the shell of the pearl oyster Pinctada margaritifera (Mollusca, Bivalvia). Microsc. Microanal. 16, 91–98 [CrossRef] [PubMed] [Google Scholar]
  • Farre B., Brunelle A., Laprévote O., Cuif J.P., Williams C.T., Dauphin Y., 2011, Shell layers of the black-lip pearl oyster Pinctada margaritifera: matching microstructure and composition. Comp. Biochem. Physiol. B 159, 131–139. [CrossRef] [Google Scholar]
  • Fryda J., Kliknarova K., Frydiva B., Mergl M., 2010, Variability in the crystallographic texture of bivalve nacre. Bull. Geosci. 85, 645–662. [CrossRef] [Google Scholar]
  • Inoue N., Ishibashi R., Ishikawa T., Atsumi T., Aoki H., Komaru A., 2011, Can the quality of pearls from the Japanese pearl oyster (Pinctada fucata) be explained by the gene expression patterns of the major shell matrix proteins in the pearl sac? Mar. Biotechnol. 13, 48–55. [Google Scholar]
  • Joubert C., Piquemal D., Maris B., Manchon L., Pierrat F., Zanella-Clleaon I., Cochennec-Laureau N., Guegen Y., Montgnani C., 2010, Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization. BMC Genomics 11, 613 doi: 10.11861471-2164-11-613. [Google Scholar]
  • Kawakami I.K., 1952a, Studies on pearl formation. On the regeneration and transformation of the mantle piece in the pearl oyster. Mem. Fac. Kyushu Univ., Ser. E 1, 83–89. [Google Scholar]
  • Kawakami I.K., 1952b, Marine regeneration in pearl oyster (Pinctada martensii). J. Fuji Pearl. Inst. 2(2), 1–4. [Google Scholar]
  • Kobayashi I., 2008, Scanning electron microscopic structure of the prismatic layer in the Bivalvia. Front. Mater. Sci. China 2, 246–252. [CrossRef] [Google Scholar]
  • Kong Y., Jing G., Yan Z., Li C., Gong N., Zhu F., Li D., Zhang Y., Zheng G., Wang H., Xie L., Zhang R., 2009, Cloning and characterization of prisilkin-39, a novel matrix protein serving a dual role in the prismatic layer formation from the oyster Pinctada fucata. J. Biol. Chem. 284, 10842–10854. [CrossRef] [Google Scholar]
  • Nudelman F., Shimoni E., Klein E. ,Rousseau M., Bourrat X., Lopez E., Addadi L., Weiner S., 2008, Forming nacreous layer of the shells of the bivalves Atrina rigida and Pinctada margaritifera: an environmental- and cryoscanning electron microscopy study. J. Struct. Biol. 162, 290–300. [CrossRef] [PubMed] [Google Scholar]
  • Okumura T., Suzuki M., Nagasawa H., Kogure T., 2010, Characteristics of biogenic calcite in the prismatic layer of a pearl oyster, Pinctada fucata. Micron 41, 821–826. [CrossRef] [PubMed] [Google Scholar]
  • Rouzière S., Jourdanneau E., Kasmi B., Petermann D., Albouy P.A., 2010, A laboratory X-ray microbeam for combined X-ray diffraction and fluorescence measurements. J. Appl. Cryst. 43, 1131–1133. [CrossRef] [Google Scholar]
  • Saleuddin A.S.M., 1974, An electron microscopic study of the formation and structure of the periostracum in Astarte (Bivalvia). Rev. Can. Zool. 52, 1463–1471. [CrossRef] [Google Scholar]
  • Schâffer T.E., Ionescu-Zanetti C., Proksch R., Fritz M., Walters D.A., Almquist N., Zaremba C., Belcher A.M, Smith B.L., Stucky G.D., Morse D.E., Hansma P.K., 1997, Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges. Chem. Mater. 9, 1731–1740. [CrossRef] [Google Scholar]
  • Suzuki S., Uozumi S., 1981, Organic components of prismatic layers in molluscan shells. J. Fac. Sci. Hokkaido Univ., Ser. IV. 20, 7–20. [Google Scholar]
  • Suzuki M., Sakuda S., Nagasawa H., 2007, Identification of chitin in the prismatic layer of the shell and a chitin synthase gene from the Japanese pearl oyster, Pinctada fucata. Biosci. Biotechnol. Biochem. 71, 1735–1744. [CrossRef] [PubMed] [Google Scholar]
  • Suzuki M., Saruwatari K., Kogure T., Yamamoto Y., Nishimura T., Kato T., Nagasawa H., 2009, An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325, 5946, 1388–1390. [CrossRef] [PubMed] [Google Scholar]
  • Tagaki R., Miyashita T., 2010, Prismin: A new matrix protein family in the Japanese pearl oyster (Pinctada fucata) involved in prismatic layer formation. Zool. Sci. 27, 416–426. [CrossRef] [PubMed] [Google Scholar]
  • Taylor J.D., Kennedy W.J., Hall A., 1969, The shell structure and mineralogy of the Bivalvia. I. Introduction. Nuculacae–Trigonacae. Bull. Br. Mus. Nat. Hist. Zool. 3, 1–125. [Google Scholar]
  • Taylor J., Strack E., 2008, Pearl production. In: Southgate P.C., Lucas J.S. (Eds.). The pearl oyster, Amsterdam, Elsevier, pp. 272–302. [Google Scholar]
  • Tsukamoto D., Sarashina I., Endo K., 2004, Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Biochem. Biophys. Res. Comm. 320, 1175–1180. [CrossRef] [Google Scholar]
  • Zhang C., Xie L., Huang J., Liu X., Zhang R., 2006, A novel matrix protein family participating in the prismatic layer framework formation of pearl oyster, Pinctada fucata. Biochem. Biophys. Res. Comm. 344, 735–740. [CrossRef] [Google Scholar]
  • Aquat. Living Resour. 23, 277–284 (2010) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.