Physiomar10
Free Access
Issue
Aquat. Living Resour.
Volume 24, Number 3, July-September 2011
Physiomar10
Page(s) 283 - 293
DOI https://doi.org/10.1051/alr/2011115
Published online 14 June 2011
  • Alfaro A.C., 2005, Effect of water flow and oxygen concentration on early settlement of the New Zealand green-lipped mussel, Perna canaliculus. Aquaculture 246, 285–294. [CrossRef] [Google Scholar]
  • Alfaro A.C., 2006, Byssal attachment of juvenile mussels, Perna canaliculus, affected by water motion and air bubbles. Aquaculture 255, 357–361. [CrossRef] [Google Scholar]
  • Babarro J., Reiriz M., 2010, Secretion of byssal threads in Mytilus galloprovincialis: quantitative and qualitative values after spawning stress. J. Comp. Physiol. 180, 95–104. [Google Scholar]
  • Bairati A., Vitellaro-Zuccarello L., 1976, The ultrastructure of the byssal apparatus of Mytilus galloprovincialis. IV. Observations by transmission electron microscopy. Cell Tissue Res. 166, 219–234. [PubMed] [Google Scholar]
  • Bayne B.L., Newell R.C., 1983, Physiological energetics of marine molluscs. In: Saleuddin A.S.M., Wilbur K.M. (Eds.), The Mollusca. London, Academic Press, pp. 407–515. [Google Scholar]
  • Bayne B.L., Widdows J., 1978, The physiological ecology of two populations of Mytilus edulis L. Oecologia 37, 137–162. [CrossRef] [PubMed] [Google Scholar]
  • Belkhir K., Borsa P., Goudet J., Chikhi L., Bonhomme F., 1998, Genetix, logiciel sous WindowTM pour la génétique des populations, Laboratoire génome et populations, CNRS UPR 9060, Université de Montpellier II, Montpellier. [Google Scholar]
  • Bell E.C., Gosline J.M., 1996, Mechanical design of mussel byssus: Material yield enhances attachment strength. J. Exp. Biol. 199, 1005–1017. [PubMed] [Google Scholar]
  • Bell E.C., Gosline J.M., 1997, Strategies for life in flow: tenacity, morphometry, and probability of dislodgment of two Mytilus species. Mar. Ecol. Prog. Ser. 159, 197–208. [CrossRef] [Google Scholar]
  • Benedict C., Waite J.H., 1986, Composition and ultrastructure of the byssus of Mytilus edulis. J. Morphol. 189, 261–270. [CrossRef] [PubMed] [Google Scholar]
  • Blanco S.L., Suárez M.P., San Juan F., 2006, Seasonal changes of nucleotides in mussel (Mytilus galloprovincialis) mantle tissue. Comp. Biochem. Physiol. 143B, 384–390. [Google Scholar]
  • Bourque F., Myrand B., 2006, Étude descriptive du dégrappage en milieu lagunaire aux Îles-de-la-Madeleine, MAPAQ, DIT, Rapport de R-D. No. 152. [Google Scholar]
  • Calder P.C., Yaqoob P., 2007, Lipid rafts – Composition, characterization, and controversies. J. Nutr. 137, 545–547. [PubMed] [Google Scholar]
  • Carrington E., 2002, Seasonal variation in the attachment strength of blue mussels: causes and consequences. Limnol. Oceanogr. 47, 1723–1733. [CrossRef] [Google Scholar]
  • Cartier S., Pellerin J., Fournier M., Tamigneaux E., Girault L., Lemaire N., 2004, Use of an index based on the blue mussel (Mytilus edulis and Mytilus trossulus) digestive gland weight to assess the nutritional quality of mussel farm sites. Aquaculture 241, 633–654. [CrossRef] [Google Scholar]
  • Clarke K.R., Warwick R.M., 2001, Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth. [Google Scholar]
  • Clarke M., 1999, The effect of food availability on byssogenesis by the zebra mussel (Dreissena polymorpha Pallas). J. Mollusc. Stud. 65, 329–333. [Google Scholar]
  • Coyne K.J., Qin X.X., Waite J.H., 1997, Extensible collagen in mussel byssus: A natural block copolymer. Science 277, 1830–1832. [CrossRef] [PubMed] [Google Scholar]
  • Dolmer P., Svane I., 1994, Attachment and orientation of Mytilus edulis L. in flowing water. Ophelia 40, 63–74. [Google Scholar]
  • Epp J., Bricelj V.M., Malouf R.E., 1988, Seasonal partitioning and utilization of energy reserves in two age classes of the bay scallop Argopecten irradians irradians (Lamarck). J. Exp. Mar. Biol. Ecol. 121, 113–136. [CrossRef] [Google Scholar]
  • Folch J., Lees M., Sloane-Stanlez G.H., 1957, A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509. [PubMed] [Google Scholar]
  • Fréchette M., Bergeron P., Gagnon P., 1996, On the use of self-thinning relationships in stocking experiments. Aquaculture 145, 91–112. [CrossRef] [Google Scholar]
  • Freites L., Fernandez-Reiriz M.J., Labarta U., 2002, Lipid classes of mussel seeds Mytilus galloprovincialis of subtidal and rocky shore origin. Aquaculture 207, 97–111. [CrossRef] [Google Scholar]
  • Gentili M.R., Beaumont A.R., 1988, Environmental stress, heterozygosity, and growth rate in Mytilus edulis L. J. Exp. Mar. Biol. Ecol. 120, 145–153. [CrossRef] [Google Scholar]
  • Gosling E.M., 1992, Genetics of Mytilus, The mussel Mytilus: ecology, physiology, genetics, Developments in aquaculture and fisheries science, Elsevier, Amsterdam, pp. 309–380. [Google Scholar]
  • Goudet J., 2001, FSTAT, a program to estimate and test gene diversities andfixation indices (version 2.9.3.2), Updated from Goudet 1995, FSTAT version 1.2: acomputer program to calculate F-statistics. J. Hered. 86, 485–486. [Google Scholar]
  • Hawkins A.J.S., 1985, Relationships between the synthesis and breakdown of protein, dietary absorption and turnovers of nitrogen and carbon in the blue mussel, Mytilus edulis L. Oecologia 66, 42–49. [CrossRef] [PubMed] [Google Scholar]
  • Hawkins A.J.S., Bayne B.L., 1991, Nutririon of marine mussels: factors influencing the relative utilizations of protein and energy. Aquaculture 94, 177–196. [CrossRef] [Google Scholar]
  • Hawkins A.J.S., Day A.J., 1996, The metabolic basis of genetic differences in growth efficiency among marine animals. J. Exp. Mar. Biol. Ecol. 203, 93–115. [CrossRef] [Google Scholar]
  • Hazel J.R., Williams E.E., 1990, The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog. Lipid Res. 29, 167–227. [CrossRef] [PubMed] [Google Scholar]
  • Holten-Andersen N., Harrington M.J., Birkedal H., Lee, B.P., Messersmith P.B., Lee K.Y.C., Waite J.H., 2011, pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Nat. Acad. Sci. USA 108, 2651–2655. [CrossRef] [Google Scholar]
  • Hulbert A.J., Else P.L., 1999, Membranes as possible pacemakers ofmetabolism. J. Theor. Biol. 199, 257–274. [CrossRef] [PubMed] [Google Scholar]
  • Hulbert A.J., 2003, Life, death and membrane bilayers. J. Exp. Biol. 206, 2303–2311. [CrossRef] [PubMed] [Google Scholar]
  • Hunt H.L., Scheibling R.E., 2001, Predicting wave dislodgment of mussels: variation in attachment strength with body size, habitat, and season. Mar. Ecol. Prog. Ser. 213, 157–164. [CrossRef] [Google Scholar]
  • Hunt H.L., Sheibling R.E., 2002, Movement and wave dislodgment of mussels on a wave-exposed rocky shore. Veliger 45, 273–277. [Google Scholar]
  • Kraffe E., Soudant P., Marty Y., 2004, Fatty acids of serine, ethanolamine, and choline plasmalogens in some marine bivalves. Lipids 39, 59–66. [CrossRef] [PubMed] [Google Scholar]
  • Kraffe E., Tremblay R., Belvin S., LeCoz J.-R., Marty Y., Guderley H., 2008, Effect of reproduction on escape responses, metabolic rates and muscle mitochondrial properties in the scallop Placopecten magellanicus. Mar. Biol. 156, 25–38. [CrossRef] [Google Scholar]
  • Lachance A.A., Myrand B., Tremblay R., Koutitonsky V., Carrington E., 2008, Biotic and abiotic factors influencing attachment strength of blue mussels Mytilus edulis in suspended culture. Aquat. Biol. 2, 119–129. [CrossRef] [Google Scholar]
  • Le Grand F., Kraffe E., Marty Y., Donaghy L., Soudant P., 2011, Membrane phospholipid compositions of hemocytes in the Pacific oyster Crassostrea gigas and the Manila clam Ruditapes philippinarum. Comp. Biochem. Physiol. 159, 383–391. [CrossRef] [PubMed] [Google Scholar]
  • LeBlanc N., Tremblay R., Davidson J., Landry T., McNiven M., 2008, The effect of selection treatments on Mytilus edulis, modifications of genetic and physiological characteristics. Mar. Biol. 153, 1142–1152. [CrossRef] [Google Scholar]
  • Lee C.Y., Shirley S., Lim L., Owen M.D., 1990, The rate and strength of byssal reattachment by blue mussels (Mytilus edulis L.). Can. J. Zool. 68, 2005–2009. [CrossRef] [Google Scholar]
  • Lemaire N., Pellerin J., Fournier M., Girault L., Tamigneaux E., Cartier S., Pelletier E., 2006, Seasonal variations of physiological parameters in the blue mussel Mytilus spp. from farm sites of eastern Quebec. Aquaculture 261, 729–751. [CrossRef] [Google Scholar]
  • Mahéo R., 1968, Observations sur l’anatomie et le fonctionnement du complexe byssogène de Chlamys varia L. Cah. Biol. Mar. 9, 373–379. [Google Scholar]
  • Mallet A., Myrand B., 1995, The culture of the blue mussel in Atlantic Canada. In: Boghen A.D. (Ed.), Cold-Water Aquaculture in Atlantic Canada, 2nd edn. Moncton, Canada, Canadian Institute for Research on Regional Development, pp. 255–296. [Google Scholar]
  • Marty Y., Delaunay F., Moal J., Samain J.-F., 1992, Changes in the fatty acid composition of Pecten maximus (L.) during larval development. J. Exp. Mar. Biol. Ecol. 163, 221–234. [CrossRef] [Google Scholar]
  • Monahan J., Wilker J.J., 2004, Cross-linking the protein precursor of marine mussel adhesives: bulk measurements and reagents for curring. Langmuir 20, 3724–3729. [CrossRef] [PubMed] [Google Scholar]
  • Myrand B., Guderley H., Himmelman J.H., 2000, Reproduction and summer mortality of blue mussels Mytilus edulis in the Magdalen Islands, southern Gulf of St. Lawrence. Mar. Ecol. Prog. Ser. 197, 193–207. [CrossRef] [Google Scholar]
  • Myrand B., Tremblay R., Sévigny J.-M., 2002, Selection against blue mussels (Mytilus edulis L.) homozygotes under various stressful conditions. J. Hered. 93, 238–248. [CrossRef] [PubMed] [Google Scholar]
  • Myrand B., Tremblay R., Sévigny J.-M., 2009a, Decreases in multi-locus heterozygosity in suspension-cultured mussels (Mytilus edulis) through loss of the more heterozygous individuals. Aquaculture 295, 188–194. [CrossRef] [Google Scholar]
  • Myrand B., Tremblay R., Sévigny J.-M., 2009b, Impact of suspension culture using mesh sleeves on genetic characteristics of Mytilus edulis L. in Canada. Aquaculture 291, 147–153. [CrossRef] [Google Scholar]
  • Parrish C., 1987, Separation of aquatic lipid classes by chromarod thin-layer chromatography with measurement by Iatroscan Flame Ionization detection. Can. J. Fish. Aquat. Sci. 44, 722–731. [CrossRef] [Google Scholar]
  • Pernet F., Tremblay R., Comeau L., Guderley H., 2007, Temperature adaptation in two bivalve species from different thermal habitat: energetic and remodeling of membrane lipids. J. Exp. Biol. 210, 2999–3014. [CrossRef] [PubMed] [Google Scholar]
  • Phillips R., Ursell T., Wiggins P., Sens P., 2009, Emerging roles for lipids in shaping membrane-protein function. Nature 459, 379–385. [CrossRef] [PubMed] [Google Scholar]
  • Pieters H., Kluytmans J.H., Zandee D.I., Cadee G.C., 1980, Tissue composition and reproduction of Mytilus edulis in relation to food availability. Neth. J. Sea Res. 14, 349–361. [CrossRef] [Google Scholar]
  • Racotta I.S., Ramirez J.L., Ibarra A.M., Rodriguez-Jaramillo M.C., Carreno D., Palacios E., 2003, Growth and gametogenesis in the lion-paw scallop Nodipecten (Lyropecten) subnodosus. Aquaculture 217, 335–349. [CrossRef] [Google Scholar]
  • Rodhouse P.G., Roden C.M., Hensey M.P., Ryan T.H., 1984, Ressource allocation in Mytilus edulis on the shore and in suspended culture. Mar. Biol. 84, 27–34. [CrossRef] [Google Scholar]
  • Scott T.M., Koehn R.K., 1990, The effect of environmental stress on the relationship of heterozygosity to growth rate in the coot clam Mulinia lateralis (Say). J. Exp. Biol. Ecol. 135, 109–116. [CrossRef] [Google Scholar]
  • Seed R., Richardson C.A., 1999, Evolutionary traits in Perna viridis (Linnaeus) and Septifer virgatus (Wiegmann) (Bivalvia: Mytilidae). J. Exp. Mar. Biol. Ecol. 239, 273–287. [CrossRef] [Google Scholar]
  • Sénéchal J., Grant J., Archambault M.-C., 2008, Experimental manipulation of suspended culture socks: growth and behavior juvenile mussels (Mytilus spp.). J. Shellfish Res. 27, 811–826. [CrossRef] [Google Scholar]
  • Soo Hwang D., Zeng H., Masic A., Harrington M.J., Israelachvili J.N., Waite J.H., 2010, Protein- and metal-dependent interactions of a prominent protein in mussel adhesive plaques. J. Biol. Chem. 285, 25850–25858. [CrossRef] [PubMed] [Google Scholar]
  • Stuart J.A., Gillis T.E., Ballantyne J.S., 1998, Compositional correlates of metabolic depression in the mitochondrial membranes of estivating snails. Am. J. Physiol. Regul. Integr. Comp. Physiol. 44, R1977–R1982. [Google Scholar]
  • Thieltges D.W., Buschbaum C., 2007, Mechanism of an epibiont burden: Crepidula fornicata increases byssus thread production by Mytilus edulis. J. Mollusc. Stud. 73, 75–77. [CrossRef] [Google Scholar]
  • Tremblay R., Myrand B., Sevigny J.-M., 1998a, Genetic characterization of wild and suspension-cultured blue mussels (Mytilus edulis Linneaus, 1758) in the Magdalen Islands (southern Gulf of St. Lawrence, Canada). J. Shellfish Res. 17, 1191–1202. [Google Scholar]
  • Tremblay R., Myrand B., Sévigny J.-M., Blier P., Guderley H., 1998b, Bioenergetic and genetic parameters in relation to susceptibility of blue mussels, Mytilus edulis (L.) to summer mortality. J. Exp. Mar. Biol. Ecol. 221, 27–58. [CrossRef] [Google Scholar]
  • Waite J.H., 2002, Adhésion à la moule. Int. Comp. Biol. 42, 1172–1180. [CrossRef] [Google Scholar]
  • Weir B.S., Cockerham C.C., 1984, Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370. [CrossRef] [PubMed] [Google Scholar]
  • Young G.A., 1985, Byssus-thread formation by the mussel Mytilus edulis: effects of environmental factors. Mar. Ecol. Prog. Ser. 24, 261–271. [CrossRef] [Google Scholar]
  • Zardi G.I., McQuaid C.D., Nicastro K.R., 2007, Balancing survival and reproduction: seasonality of wave action, attachment strength and reproductive output in indigenous Perna perna and invasive Mytilus galloprovincialis mussels. Mar. Ecol. Prog. Ser. 334, 155–163. [CrossRef] [Google Scholar]
  • Zehmer J.K., Hazel J.R., 2005, Thermally induced changes in lipid composition of raft and non-raft regions of hepatocyte plasma membranes of rainbow trout. J. Exp. Biol. 208, 4283–4290. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.