Free Access
Issue
Aquat. Living Resour.
Volume 24, Number 2, April-June 2011
Page(s) 201 - 209
Section Regular articles
DOI https://doi.org/10.1051/alr/2011121
Published online 05 August 2011
  • Aarestrup K., Jepsen N., 1998, Spawning migration of sea trout (Salmo trutta (L)) in a Danish river. Hydrobiologia 371/372, 275–281. [CrossRef] [Google Scholar]
  • Aarestrup K., Koed A., 2003, Survival of migrating sea trout (Salmo trutta) and Atlantic salmon (Salmo salar) smolts negotiating weirs in small Danish rivers. Ecol. Freshw. Fish 12, 169–176. [CrossRef] [Google Scholar]
  • Aarestrup K., Jepsen N., Koed A., Pedersen S., 2005, Movement and mortality of stocked brown trout in a stream. J. Fish Biol. 66, 721–728. [CrossRef] [Google Scholar]
  • Agostinho A.A., Gomes L.C., Fernandez D.R., Suzuki H.I., 2002, Efficiency of fish ladders for neotropical ichthyofauna. River Res. Applic. 18, 299–306. [CrossRef] [Google Scholar]
  • Arnekleiv J.V., Rønning L., 2004, Migratory patterns and return to the catch site of adult brown trout (Salmo trutta L.) in a regulated river. River Res. Applic. 20, 929–942. [CrossRef] [Google Scholar]
  • Brown L.S., Haro A., Castro-Santos T., 2009, Three-dimensional movement of silver-phase American eels in the forebay of a small hydroelectric facility. Am. Fish. Soc. Symp. 58, 277–291. [Google Scholar]
  • Buchanan R.A., Skalski J.R., McMichael G.A., 2009, Differentiating mortality from delayed migration in subyearling fall Chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci. 66, 2243–2255. [CrossRef] [Google Scholar]
  • Cote J., Fogarty S., Weinersmith K., Brodin T., Sih A., 2010, Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis). Proc. R. Soc. B-Biol. Sci. 277, 1571–1579. [CrossRef] [Google Scholar]
  • Crozier W.W., Kennedy G.J.A., 1993, Marine survival of wild and hatchery reared salmon (Salmo salar L.) from the river Bush, Northern Ireland. In Mills D.H. (Ed.). Salmon in the sea and the new enhancement strategies. Blackwell Scientific Publications, Oxford, pp. 139–162. [Google Scholar]
  • Davidsen J., Svenning M.-A., Orell P., Yoccoz N., Dempson J.B., Niemelä E., Klemetsen A., Lamberg A., Erkinaro J., 2005, Spatial and temporal migration of wild Atlantic salmon smolts determined from a video camera array in the sub-arctic river Tana. Fish. Res. 74, 210–222. [CrossRef] [Google Scholar]
  • Enders E.C., Gessel M.H., Williams J.G., 2009, Development of successful fish passage structures for downstream migrants requires knowledge of their behavioural response to accelerating flow. Can. J. Fish. Aquat. Sci. 66, 2109–2117. [CrossRef] [Google Scholar]
  • Ehrenberg J.E., Steig T.W., 2002, A method for estimating the “position accuracy” of acoustic fish tags. ICES J. Mar. Sci. 59, 140–149. [CrossRef] [Google Scholar]
  • Ehrenberg J.E., Steig T.W., 2003, Improved techniques for studying the temporal and spatial behavior of fish in a fixed location. ICES J. Mar. Sci. 60, 700–706. [CrossRef] [Google Scholar]
  • Finstad B., Økland F., Thorstad E.B., Bjorn P.A., McKinley R.S., 2005, Migration of hatchery- reared Atlantic salmon and wild anadromous brown trout post-smolts in a Norwegian fjord system. J. Fish Biol. 66, 86–96. [CrossRef] [Google Scholar]
  • Gehrke P.C., Gilligan D.M., Barwick M., 2002, Changes in fish communities of the Shoalhaven River 20 years after construction of Tallowa Dam, Australia. River Res. Applic. 18, 265–286. [CrossRef] [Google Scholar]
  • Goodwin R.A., Nestler J.M., Anderson J.J., Weber L.J., Loucks D.P., 2006, Forecasting 3-D fish movement behavior using a Eulerian-Lagrangian-agent method (ELAM). Ecol. Model. 192, 197–223. [CrossRef] [Google Scholar]
  • Gosset C., Rives J., Labonne J., 2006, Effect of habitat fragmentation on spawning migration of brown trout (Salmo trutta L.). Ecol. Freshw. Fish 15, 247–254. [CrossRef] [Google Scholar]
  • Hansen M.M., Jensen L.F., 2005, Sibship within samples of brown trout (Salmo trutta) and implications for supportive breeding. Conserv. Genet. 6, 297–305. [CrossRef] [EDP Sciences] [Google Scholar]
  • Haro A., Odeh M., Noreika J., Castro-Santos T., 1998, Effect of water acceleration on downstream migratory behavior and passage of Atlantic salmon smolts and juvenile American shad at surface bypasses. T. Am. Fish. Soc. 127, 118–127. [CrossRef] [Google Scholar]
  • Heggenes J., Røed K.H., 2006, Do dams increase genetic diversity in brown trout (Salmo trutta)? Microgeographic differentiation in a fragmented river. Ecol. Freshw. Fish 15, 366–375. [CrossRef] [Google Scholar]
  • Hoar W.S., 1988, The physiology of smolting salmonids. In Hoar W.S., Randall D.J. (Eds.). Fish Physiology, vol. 11. Academic Press, New York, pp. 275–343. [Google Scholar]
  • Hvidsten N.A., Jensen A.J., Rikardsen A.H., Finstad B., Aure J., Stefansson S., Fiske P., Johnsen B.O., 2009, Influence of sea temperature and initial marine feeding on survival of Atlantic salmon Salmo salar post-smolts from the Rivers Orkla and Hals, Norway. J. Fish Biol. 74, 1532–1548. [CrossRef] [PubMed] [Google Scholar]
  • Johnsen B.O., Arnekleiv J.V., Asplin L., Barlaup B.T., Næsje T.F., Rosseland B.O., Saltveit S.J., Tvede A., 2011, Hydropower development – ecological effects. In Aa Ø., Einum S., Klemetsen A., Skurdal J. (Eds.). Atlantic salmon ecology. Blackwell Publishing Ltd., Oxford, pp. 351–385. [Google Scholar]
  • Johnson P.N., Bouchard K., Goetz F.A., 2005, Effectiveness of strobe lights for reducing juvenile salmonid entrainment into a navigation lock. N. Am. J. Fish. Manage. 25, 491–501. [CrossRef] [Google Scholar]
  • Johnson S.L., Power J.H., Wilson D.R., Ray J., 2010, A comparison of the survival and migratory behavior of hatchery-reared and naturally reared steelhead smolts in the Alsea River and estuary, Oregon, using acoustic telemetry. N. Am. J. Fish. Manage. 30, 55–71. [CrossRef] [Google Scholar]
  • Jonsson B., Jonsson N., 2004, Factors affecting marine production of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 62, 2369–2383. [CrossRef] [Google Scholar]
  • Jonsson N., Jonsson B., Hansen L.P., 1998, The relative role of density-dependent and density-independent survival in the life cycle of Atlantic salmon Salmo salar. J. Anim. Ecol. 67, 751–762. [CrossRef] [Google Scholar]
  • Jonsson N., Jonsson B., 2002, Migration of anadromous brown trout Salmo trutta in a Norwegian river. Freshw. Biol. 47, 1391–1401. [CrossRef] [Google Scholar]
  • Kanno Y., Vokoun J.C., 2010, Evaluating effects of water withdrawals and impoundments on fish assemblages in southern New England streams, USA. Fish. Manage. Ecol. 17, 272–283. [CrossRef] [Google Scholar]
  • Kemp P.S., Gessel M.H., Williams J.G., 2005, Seaward migrating subyearling Chinook salmon avoid overhead cover. J. Fish Biol. 67, 1381–1391. [CrossRef] [Google Scholar]
  • Kemp P.S., Williams J.G., 2008, Response of migrating Chinook salmon (Oncorhynchus tshawytscha) smolts to in-stream structure associated with culverts. River Res. Applic. 24, 571–579. [CrossRef] [Google Scholar]
  • Kemp P.S., Williams J.G., 2009, Illumination influences the ability of migrating juvenile salmonids to pass a submerged experimental weir. Ecol. Freshw. Fish 18, 297–304. [CrossRef] [PubMed] [Google Scholar]
  • Kemp P.S., O’Hanley J.R., 2010, Procedures for evaluating and prioritising the removal of fish passage barriers: a synthesis. Fish. Manage. Ecol. 17, 297–322. [Google Scholar]
  • Martel G., Dill L.M., 1995, Influence of movement by coho salmon (Oncorhynchus kisutch) parr on their detection by common mergansers (Mergus merganser). Ethology 99, 139–149. [CrossRef] [Google Scholar]
  • McCormick S.D., Hansen L.P., Quinn T.P., Saunders R.L., 1998, Movement, migration, and smelting of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 55, 77–92. [CrossRef] [Google Scholar]
  • Meldgaard T., Nielsen E.E., Loeschcke V., 2003, Fragmentation by weirs in a riverine system: a study of genetic variation in time and space among populations of European grayling (Thymallus thymallus) in a Danish river system. Conserv. Genet. 4, 735–747. [CrossRef] [Google Scholar]
  • Nams V.O., 2006, Improving accuracy and precision in estimating fractal dimension of animal movement paths. Acta Biotheor. 54, 1–11. [CrossRef] [PubMed] [Google Scholar]
  • Nestler J.M., Goodwin R.A., Smith D.L., Anderson J.J., Li S., 2008, Optimum fish passage and guidance designs are based in the hydrogeomorphology of natural rivers. River Res. Applic. 24, 148–168. [CrossRef] [Google Scholar]
  • Nielsen C., Holdensgaard G., Petersen H.C., Björnsson B.T., Madsen S.S., 2001, Genetic differences in physiology, growth hormone levels and migratory behaviour of Atlantic salmon smolts. J. Fish Biol. 59, 28–44. [CrossRef] [Google Scholar]
  • Olsèn K.H., Petersson E., Ragnarsson B., Lundqvist H., Jarvi T., 2004, Downstream migration in Atlantic salmon (Salmo salar) smolt sibling groups. Can. J. Fish. Aquat. Sci. 61, 328–331. [CrossRef] [Google Scholar]
  • Olsson I.C., Greenberg L.A., Eklov A.G., 2001, Effect of an artificial pond on migrating brown trout smolts. N. Am. J. Fish. Manage. 21, 498–506. [CrossRef] [Google Scholar]
  • Parrish D.L., Behnke R.J., Gephard S.R., McCormick S.D., Reeves G.H., 1998, Why aren’t there more Atlantic salmon (Salmo salar)? Can. J. Fish. Aquat. Sci. 55, 281–287. [CrossRef] [Google Scholar]
  • Petrosky C.E., Schaller H.A., 2010, Influence of river conditions during seaward migration and ocean conditions on survival rates of Snake River Chinook salmon and steelhead. Ecol. Freshw. Fish 19, 520–536. [CrossRef] [Google Scholar]
  • Plumb J.M., Perry R.W., Adams N.S., Rondorf D.W., 2006, The effects of river impoundment and hatchery rearing on the migration behaviour of juvenile steelhead in the lower Snake River, Washington. N. Am. J. Fish. Manage. 26, 438–452. [CrossRef] [Google Scholar]
  • Roscoe D.W., Hinch S.G., 2010, Effectiveness monitoring of fish passage facilities: historical trends, geographic patterns and future directions. Fish Fish. 11, 12–33. [Google Scholar]
  • Saunders J.W., 1960, The effect of impoundment on the population and movement of Atlantic salmon in Ellerslie Brook, Prince Edward Island. J. Fish. Res. Board Can. 17, 453–473. [CrossRef] [Google Scholar]
  • Schilt C.R., 2007, Developing fish passage and protection at hydropower dams. Appl. Anim. Behav. Sci. 104, 295–325. [CrossRef] [Google Scholar]
  • Semmens B.X., 2008, Acoustically derived fine-scale behaviors of juvenile Chinook salmon (Oncorhynchus tshawytscha) associated with intertidal benthic habitats in an estuary. Can. J. Fish. Aquat. Sci. 65, 2053–2062. [CrossRef] [Google Scholar]
  • Shrimpton J.M., Björnsson B.T., McCormick S.D., 2000, Can Atlantic salmon smolt twice? Endocrine and biochemical changes during smolting. Can. J. Fish. Aquat. Sci. 57, 1969–1976. [CrossRef] [Google Scholar]
  • Smith L.S., 1982, Decreased swimming performance as a necessary component of the smolt migration in salmon in the Columbia River. Aquaculture 28, 153–161. [CrossRef] [Google Scholar]
  • Sonny D., Knudsen F.R., Enger P.S., Kvernstuen T., Sand O., 2006, Reactions of cyprinids to infrasound in a lake and at the cooling water inlet of a nuclear power plant. J. Fish Biol. 69, 735–748. [CrossRef] [Google Scholar]
  • Strand J.E.T., Davidsen J.G., Jørgensen E.H., Rikardsen A.H., 2011, Seaward migrating Atlantic salmon smolts with low levels of gill Na + , K + -ATPase activity; is sea entry delayed? Environ. Biol. Fishes. 90, 317–321. [CrossRef] [Google Scholar]
  • Svendsen J.C., Eskesen A.O., Aarestrup K., Koed A., Jordan A.D., 2007, Evidence for non- random spatial positioning of migrating smolts (Salmonidae) in a small lowland stream. Freshw. Biol. 52, 1147–1158. [CrossRef] [Google Scholar]
  • Svendsen J.C., Aarestrup K., Deacon M.G., Christensen R.H.B., 2010, Effects of a surface oriented travelling screen and water abstraction practices on downstream migrating Salmonidae smolts in a lowland stream. River Res. Applic. 26, 353–361. [Google Scholar]
  • Thorstad E.B, Økland F., Finstad B., Sivertsgard R., Bjorn P.A., McKinley R.S., 2004, Migration speeds and orientation of Atlantic salmon and sea trout post-smolts in a Norwegian fjord system. Environ. Biol. Fish. 71, 305–311. [CrossRef] [Google Scholar]
  • Todd C.D., Friedland K.D., MacLean J.C., Hazon N., Jensen A.J., 2011, Getting into hot water? Atlantic salmon responses to climate change in freshwater and marine environments. In Aa Ø., Einum S., Klemetsen A., Skurdal J. (Eds.). Atlantic salmon ecology. Blackwell Publishing Ltd., Oxford, pp. 409–443. [Google Scholar]
  • Unwin M.J., Webb M., Barker R.J., Link W.A., 2005, Quantifying production of salmon fry in an unscreened irrigation system: a case study on the Rangitata River, New Zealand. N. Am. J. Fish. Manage. 25, 619–634. [CrossRef] [Google Scholar]
  • Venditti D.A., Rondorf D.W., Kraut J.M., 2000, Migratory behavior and forebay delay of radio-tagged juvenile fall Chinook salmon in a lower Snake River impoundment. N. Am. J. Fish. Manage. 20, 41–52. [CrossRef] [Google Scholar]
  • Welton J.S., Beaumont W.R.C., Clarke R.T., 2002, The efficacy of air, sound and acoustic bubble screens in deflecting Atlantic salmon, Salmo salar L., smolts in the River Frome, UK. Fish. Manage. Ecol. 9, 11–18. [CrossRef] [Google Scholar]
  • Wolf P.A., 1951, A trap for the capture of fish and other organisms moving downstream. T. Am. Fish. Soc. 80, 41–45. [CrossRef] [Google Scholar]
  • Zabel R.W., Faulkner J., Smith S.G., Anderson J.J., Holmes C.V., Beer N., Iltis S., Krinke J., Fredricks G., Bellerud B., Sweet J., Giorgi A., 2008, Comprehensive passage (COMPASS) model: a model of downstream migration and survival of juvenile salmonids through a hydropower system. Hydrobiologia 609, 289–300. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.