Issue
Aquat. Living Resour.
Volume 22, Number 4, October-December 2009
Ecosystem Approach to Fisheries
Page(s) 395 - 408
DOI https://doi.org/10.1051/alr/2009035
Published online 20 October 2009
  • Allemand D., Mayer Gostan N., de Pontual H., Boeuf G., Payan P., 2007, Fish otolith calcification in relation to endolymph chemistry. In: Bäuerlein E. (Ed.) Handbook of Biomineralization. Wiley-VCH, Weinheim, pp. 291–308. [Google Scholar]
  • Andrus C.F.T., Crowe D.E., Sandweiss D.H., Reitz E.J., Romanek C.S., 2002, Otolith Formula O record of mid-Holocene sea surface temperatures in Peru. Science 295, 1508–1511. [CrossRef] [PubMed] [Google Scholar]
  • Arnold G.P., Dewar H., 2001, Electronic tags in marine fisheries research: a 30-year perspective. In: Sibert J.R. Nielsen J.L. (Eds.) Electronic tagging and tracking in marine fisheries. Kluwer Academic Publishers, Dordrecht, pp. 7–64. [Google Scholar]
  • Bekkevold D., Clausen L.A.W., Mariani S., André C., Christensen T.B., Mosegaard H., 2007, Divergent origins of sympatric herring population components determined using genetic mixture analysis. Mar. Ecol. Prog. Ser. 337, 187–196. [CrossRef] [Google Scholar]
  • Bentzen P., Olsen J.B., McLean J.E., Seamons T.R., Quinn T.P., 2001, Kinship analysis of Pacific salmon: Insights into mating, homing and timing of reproduction. J. Hered. 92, 127–136. [CrossRef] [PubMed] [Google Scholar]
  • Bestley S., Patterson T.A., Hindell M.A., Gunn J.S., 2008, Feeding ecology of wild migratory tunas revealed by archival tag records of visceral warming. J. Anim. Ecol.77, 1223–1233. [Google Scholar]
  • Bigelow K.A., Maunder M.N., 2007, Does habitat or depth influence catch rates of pelagic species? Can. J. Fish. Aquat. Sci. 64, 1581–1594. [CrossRef] [Google Scholar]
  • Block B.A., Dewar H., Blackwell S.B., Williams T.D., Prince E.D., Farwell C.J., Boustany A., Teo S.L.H., Seitz A., Walli A., Fudge D., 2001, Migratory movements, depth preferences and thermal biology of Atlantic bluefin tuna. Science 293, 1310–1314. [CrossRef] [PubMed] [Google Scholar]
  • Block B.A., Teo S.L.H., Walli A., Boustany A., Stokesbury M.J., Farwell C.J., Weng K.C., Dewar H., Williams T.D., 2005, Electronic tagging and population structure of Atlantic bluefin tuna. Nature 434, 1121–1127. [CrossRef] [PubMed] [Google Scholar]
  • Blouin M.S., 2003, DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol. Evol. 18, 503–511. [CrossRef] [Google Scholar]
  • Bourjea J., Lapègue S., Gagnevin L., Broderick D., Mortimer J.A., Ciccione S., Roos D., Taquet C., Grizel H.M.E., 2007, Phylogeography of the green turtle Chelonia mydas in the Southwest Indian Ocean. Mol. Ecol. 16, 175–186. [CrossRef] [PubMed] [Google Scholar]
  • Bravington M., Grewe P., 2007, A method for estimating the absolute spawning stock size of SBT using close-kin genetics. CCSBT 8th Meeting of the Stock Assessment Group and CCSBT 12th Meeting of the Extended Scientific Committee. [Google Scholar]
  • Brill R.W., Lutcavage M.E., Metzger G., Bushnell P.G., Arendt M., Lucy J., Watson C., Foley D., 2001, Horizontal and vertical movements of juvenile bluefin tuna (Thunnus thynnus) in relation to oceanographic conditions of the western North Atlantic determined with ultrasonic telemetry. Fish. Bull. 100, 155–167. [Google Scholar]
  • Broecker W.S., Peng T.-H., 1982, Tracers in the sea. Lamont-Doherty Geological Observatory. [Google Scholar]
  • Browman H.I., Cury P., Hilborn R., Jennings S., Lotze H.K., Mace P.M., Murawski S.A., Pauly D., Sissenwine M., Stergiou K.I., Zeller D., 2004, Theme Section: Perspectives on ecosystem-based approaches to the management of marine resources. Mar. Ecol. Prog. Ser. 274, 269–303. [CrossRef] [Google Scholar]
  • Brumfield R.T., Beerli P., Nickerson D.A., Edwards S.V., 2003, The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol. Evol. 18, 249–256. [CrossRef] [Google Scholar]
  • Campana S.E., 1999, Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. [CrossRef] [Google Scholar]
  • Carlsson J., McDowell J.R., Diaz-Jaimes P., Carlsson J.E.L., Boles S.B., Gold J.R., Graves J.E., 2004, Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean Sea. Mol. Ecol. 13, 3345–3356. [CrossRef] [PubMed] [Google Scholar]
  • Casteele T.V.D., Galbusera P., Matthysen E., 2001, A comparison of microsatellite-based pairwise relatedness estimators. Mol. Ecol. 10, 1539–1549. [CrossRef] [PubMed] [Google Scholar]
  • CCSBT, 2008, Report of the 9th Meeting of the Stock Assessment Group and 5th Meeting of the Management Procedure Workshop. Commission for the Conservation of Southern Bluefin Tuna, Rotorua, New Zealand. [Google Scholar]
  • Chistiakov D.A., Hellemans B., Volckaert F.A., 2006, Microsatellites and their genomic distribution evolution function and applications: A review with special reference to fish genetics. Aquaculture 255, 1–29. [CrossRef] [Google Scholar]
  • Dagorn L., Bertrand A., Bach P., Petit M., Josse E., 2001, Improving our understanding of tropical tuna movements from small to large scales. In: Sibert J.R. Nielsen J.L. (Eds.) Electronic tagging and tracking in marine fisheries. Kluwer Academic Publishers Dordrecht, pp. 369–384. [Google Scholar]
  • Daverat F., Limburg K.E., Thibault I., Shiao J.C., Dodson J.J., Caron F.O., Tzeng W.N., Iizuka Y., Wickstrom H., 2006, Phenotypic plasticity of habitat use by three temperate eel species Anguilla anguilla A. japonica and A. rostrata. Mar. Ecol. Prog. Ser. 308, 231–241. [CrossRef] [Google Scholar]
  • De Metrio G., Arnold G.P., de la Serna J.M., Yannopoulos C., Megalofonou P., Buckley A.A., Pappalepore M., 2001. Further results of tagging Mediterrranean bluefin tuna with pop-up satellite detected tags. Col. Vol. Sci. Pap. ICCAT 52, 773–783. [Google Scholar]
  • de Pontual H., Geffen A.J., 2002, Otolith microchemistry. In: Panfili J., Pontual H. de, Troadec H., Wright P.J. (Eds.). Manual of fish sclerochronolgy. Ifremer- IRD Brest, pp. 245–302. [Google Scholar]
  • de Pontual H., Lagardere F., Amara R. Bohn M. Ogor A., 2003, Influence of ontogenetic and environmental changes in the otolith microchemistry of juvenile sole (Solea solea). J. Sea Res. 50, 199–210. [CrossRef] [Google Scholar]
  • de Pontual H., Lagardère F., Troadec H., Batel A., Desaunay Y., Koutsikopoulos C., 2000, Otoliths imprinting of sole (Solea solea) from the Bay of Biscay: a tool to discriminate individuals from nursery origins? Oceanol. Acta 23, 497–513. [Google Scholar]
  • de Villiers S., 1999, Seawater strontium and Sr/Ca variability in the Atlantic and Pacific oceans. Earth Planet Sci. Lett. 171, 623–634. [CrossRef] [Google Scholar]
  • Druffel E.R.M., 1997. Geochemistry of corals: Proxies of past ocean chemistry ocean circulation and climate. Proc. Nat. Acad. Sci. US 94, 8354–8361. [Google Scholar]
  • Elsdon T.S., Gillanders B.M., 2006, Temporal variability in strontium, calcium, barium and manganese in estuaries: Implications for reconstructing environmental histories of fish from chemicals in calcified structures. Estuar. Coast. Shelf Sci. 66, 147–156. [CrossRef] [Google Scholar]
  • Elsdon T.S., Wells B.K., Campana S.E., Gillanders B.M., Jones C.M., Limburg K.E., Secor D.H., Thorrold S.R., Walther B.D., 2008, Otolith chemistry to describe movements and life-history parameters of fishes: Hypotheses assumptions limitations and inferences. Oceanogr. Mar. Biol. Ann. Rev. 46. [Google Scholar]
  • Fablet R., Daverat F., de Pontual H., 2007, Unsupervised Bayesian reconstruction of individual life histories from otolith signatures: case study of Sr:Ca transects of European eel (Anguilla anguilla) otoliths. Can. J. Fish. Aquat. Sci. 64, 152–165. [CrossRef] [Google Scholar]
  • FAO, 2002, Report and documentation of the International Workshop on Factors Contributing to Unsustainability and Overexploitation in Fisheries. Bangkok, 4–8 February 2002. FAO Fish. Rep. No. 672. [Google Scholar]
  • FAO, 2004, The state of the world fisheries and aquaculture 2004. [Google Scholar]
  • FAO, 2005, Putting into practice the ecosystem approach to fisheries. [Google Scholar]
  • Fromentin J.-M., 2009, Lessons from the past: investigating historical data from bluefin tuna fisheries. Fish Fish. 10, 197–216. [Google Scholar]
  • Fromentin J.-M., Powers J.E., 2005, Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish Fish. 6, 281–306. [Google Scholar]
  • Fromentin J.-M., Ravier C., 2005, The East Atlantic and Mediterranean bluefin tuna stock: looking for sustainability in a context of large uncertainties and strong political pressures. Bull. Mar. Sci. 76, 353–362. [Google Scholar]
  • Fromentin J.-M., Planque B., Thébaud O., 2007, L'approche écosystémique des pêches: quelles priorités pour la recherche ? The ecosystem approach to fisheries: What are the research priorities? Ifremer Report. [Google Scholar]
  • Garcia S., Grainger J.R., 2005, Gloom and doom? The future of marine capture fisheries. Phil. Trans. R. Soc. B 360, 21-46. [CrossRef] [Google Scholar]
  • Garcia, S.M., Zerbi, A., Aliaume, C., Do Chi, T., Lasserre, G. 2003, The ecosystem approach to fisheries. FAO Fish. Tech. Pap. 443. [Google Scholar]
  • Gaspar P., Georges J.-Y., Fossette S., Lenoble A., Ferraroli S., Le Maho Y., 2006, Marine animal behaviour: neglecting ocean currents can lead us up the wrong track. Proc. R. Soc. 273, 2697–2702. [CrossRef] [Google Scholar]
  • Gillanders B.M., 2002, Connectivity between juvenile and adult fish populations: do adults remain near their recruitment estuaries? Mar. Ecol. Prog. Ser. 240, 215–223. [CrossRef] [Google Scholar]
  • Goetz F.W., MacKenzie S., 2008, Functional genomics with microarrays in fish biology and fisheries. Fish Fish. 9, 378–395. [Google Scholar]
  • Goodnight K.F., Queller D.C., 1999, Computer software for performing likelihood tests of pedigree relationship using genetic markers. Mol. Ecol. 8, 1231–1234. [CrossRef] [PubMed] [Google Scholar]
  • Guinand B., Scribner K.T., 2003, Evaluation of methodology for detection of genetic bottlenecks: inferences from temporally replicated lake trout populations. C.R. Biol. 326, 61–67. [CrossRef] [Google Scholar]
  • Gunn J., Block B.A., 2001, Advances in acoustic archival and satellite tagging of tunas. In: Block B.A. Stevens E.D. (Eds.) Tuna. Physiology ecology and evolution. Academic Press San Diego, pp. 167–224. [Google Scholar]
  • Hartl D.L., Clark A.G., 1997, Principles of population genetics. Sinauer Associates Sunderland MA, USA. [Google Scholar]
  • Hauser L., Adcock G.J., Smith P.J., Ramirez J.H.B., Carvalho G.R., 2002, Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc. Nat. Acad. Sci. US 99, 11742–11747. [CrossRef] [Google Scholar]
  • Hauser L., Carvalho G.R., 2008, Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish. 9, 333–362. [Google Scholar]
  • Hedgecock D., 1994, Does variance in reproductive success limit effective population sizes of marine organisms? In: Beaumont A.R. (Ed.) Genetics and Evolution of Aquatic Organisms. Chapman and Hall, pp. 122–134. [Google Scholar]
  • Hilborn R., Orensanz J., Parma A., 2005. Institutions incentives and the future of fisheries. Phil. Trans. R. Soc. B 360, 47–57. [Google Scholar]
  • Hilborn R., Quinn T.P., Schindler D.E., Rogers D.E., 2003, Biocomplexity and fisheries sustainability. Proc. Nat. Acad. Sci. US 100, 6564–6568. [CrossRef] [Google Scholar]
  • Hilborn R. Walters C.J., 1992, Quantitative fisheries stock assessment. Choice dynamics and uncertainty. Chapman & Hall New-York. [Google Scholar]
  • Hoarau G., Boon E., Jongma D.N., Ferber S., Palsson J., Van der Veer H.W., Rijnsdorp A.D., Stam W.T., Olsen J.L., 2005, Low effective population size and evidence for inbreeding in an overexploited flatfish plaice (Pleuronectes platessa L.). Proc. R. Soc. B: Biol. Sci. 272, 497–503. [CrossRef] [Google Scholar]
  • Hoie H. Folkvord A. Otterlei E., 2003, Effect of somatic and otolith growth rate on stable isotopic composition of early juvenile cod (Gadus morhua L.) otoliths. J. Exp. Mar. Biol. Ecol. 289, 41–58. [CrossRef] [Google Scholar]
  • Hoie H., Otterlei E., Folkvord A., 2004, Temperature-dependent fractionation of stable oxygen isotopes in otoliths of juvenile cod (Gadus morhua L.). ICES J. Mar. Sci. 61, 243–251. [CrossRef] [Google Scholar]
  • Holland K.N., Brill R.W., Chang R.K.C., Sibert J.R., Fournier D.A., 1992, Physiological and behavioural thermoregulation in bigeye tuna (Thunnus obesus). Nature 358, 410–412. [CrossRef] [PubMed] [Google Scholar]
  • Holland K.N., Kajiura S.M., Itano D.G., Sibert J.R., 2001, Tagging techniques can elucidate the biology and exploitation of aggregated pelagic species. Am. Fish. Soc. Symp. 25, 211–218. [Google Scholar]
  • Hutchinson W.F., Carvahlo G.R., Rogers S.I., 2001, Marked genetic structuring in localised spawning populations of cod Gadus morhua in the North Sea and adjoining waters as revealed by microsatellites. Mar. Ecol. Progr. Ser. 223, 251–260. [CrossRef] [Google Scholar]
  • Hutchinson W.F., van Oosterhout C., Rogers S.I., Carvalho G.R., 2003, Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (Gadus morhua). Proc. R. Soc. B, Biol. Sci. 270, 2125–2132. [Google Scholar]
  • Ivany L.C., Patterson W.P., Lohmann K.C., 2000, Cooler winters as a possible cause of mass extinctions at the eocene/oligocene boundary. Nature 407, 887–890. [CrossRef] [PubMed] [Google Scholar]
  • Kalish J.M., 1991, C-13 and O-18 isotopic disequilibria in fish otoliths - metabolic and kinetic effects. Mar. Ecol. Prog. Ser. 75, 191–203. [CrossRef] [Google Scholar]
  • Kalish J.M., 1992, Formation of a stress-induced chemical check in fish otoliths. J. Exp. Mar. Biol. Ecol. 162, 265–277. [CrossRef] [Google Scholar]
  • Kalman R., 1960, A new approach to linear filtering and prediction problems. Trans. Am. J. Bas. Eng. 82, 35–45. [Google Scholar]
  • Kennedy B.P., Blum J.D., Folt C.L., Nislow K.H., 2000, Using natural strontium isotopic signatures as fish markers: methodology and application. Can. J. Fish. Aquat. Sci. 57, 2280–2292. [CrossRef] [Google Scholar]
  • Kitagawa T., Sartimbul A., Nakata H., Kimura S., Yamada H., Nitta A., 2006, The effect of water temperature on habitat use of young Pacific bluefin tuna Thunnus orientalis in the East China Sea. Fish. Sci. 72, 1166–1176. [CrossRef] [Google Scholar]
  • Kooijman S.A.L.M., 2000, Dynamic energy and mass budgets in biological systems. Cambridge University Press. [Google Scholar]
  • Lacroix G.L., McCurdy P., 1996, Migratory behaviour of post-smolt Atlantic salmon during initial stages of seaward migration. J. Fish Biol. 49, 1086–1101. [CrossRef] [Google Scholar]
  • Larkin P.A., 1996, Concepts and issues in marine ecosystem management. Rev. Fish Biol. Fish. 6, 139–164. [Google Scholar]
  • Lebreton J.D., Burnham K.P., Clobert J., Anderson D.R., 1992, Modelling survival and biological hypotheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62, 67–118. [CrossRef] [Google Scholar]
  • Lemaire C., Versini J., Bonhomme F., 2005, Maintenance of genetic differentiation across a transition zone in the sea: discordance between nuclear and cytoplasmic markers. J. Evol. Biol. 18, 70–80. [CrossRef] [PubMed] [Google Scholar]
  • Lions J.L., 1971, Optimal control of systems governed by partial differential equations. Springer-Verlag. [Google Scholar]
  • Lukacs P.M., Burnham K.P., 2005, Review of capture-recapture methods applicable to noninvasive genetic sampling. Mol. Ecol. 14, 3909–3919. [CrossRef] [PubMed] [Google Scholar]
  • Lutcavage M., Brill R.W., Skomal G.B., Chase B.C., Howey P.W., 1999, Results of pop-up satellite tagging of spawning size class fish in the Gulf of Maine: do North Atlantic bluefin tuna spawn in the mid-Atlantic? Can. J. Fish. Aquat. Sci. 56, 173–177. [CrossRef] [Google Scholar]
  • Lynch M., Ritland K., 1999, Estimation of pairwise relatedness with molecular markers. Genetics 152, 1753–1766. [PubMed] [Google Scholar]
  • Miller C.R., Joyce P., Waits L.P., 2005, A new method for estimating the size of small populations from genetic mark-recapture data. Mol. Ecol. 14, 1991–2005. [CrossRef] [PubMed] [Google Scholar]
  • Morin P.A., Luikart G., Wayne R.K., group T.S.W, 2004. SNPs in ecology evolution and conservation. Trends Ecol. Evol. 19, 208–216. [Google Scholar]
  • Mowat G., Paetkau D., 2002, Estimating marten Martes americana population size using hair capture and genetic tagging. Wildlife Biol. 8, 201–209. [Google Scholar]
  • Musyl M.K., Brill R.W., Boggs C.H., Curran D.S., Kazama T.K., Seki M.P., 2003, Vertical movements of bigeye tuna (Thunnus obesus) associated with islands buoys and seamounts near the main Hawaiian Islands from archival tagging data. Fish. Oceanogr. 12, 152–169. [CrossRef] [Google Scholar]
  • Neff B.D., 2001, Genetic paternity analysis and breeding success in bluegill sunfish (Lepomis macrochirus). J. Hered. 92, 111–119. [CrossRef] [PubMed] [Google Scholar]
  • Nei M., 1973, Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. US 70, 3321–3323. [CrossRef] [Google Scholar]
  • Nei M., 1978, Estimation of average heterozygosity and genetic distance from small number of individuals. Genetics 89, 583–590. [PubMed] [Google Scholar]
  • Nielsen A., Sibert J.R., 2007, State-space model for light-based tracking of marine animals. Can. J. Fish. Aquat. Sci. 64, 1055–1068. [CrossRef] [Google Scholar]
  • Nielsen E.E., Hansen M.M., Schmidt C., Meldrup D., Gronkjaer P., 2001, Fisheries: population of origin of Atlantic cod. Nature 413, 272. [CrossRef] [PubMed] [Google Scholar]
  • Nielsen E.E., Nielsen P.H., Meldrup D., Hansen M.M., 2004, Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea. Mol. Ecol. 13, 585–595. [CrossRef] [PubMed] [Google Scholar]
  • O'Reilly P.T., Canino M.F., Bailey K.M., Bentzen P., 2004, Inverse relationship between FST and microsatellite polymorphism in the marine fish walleye pollock (Theragra chalcogramma): implications for resolving weak population structure. Mol. Ecol. 13, 1799–1814. [CrossRef] [PubMed] [Google Scholar]
  • Østergaard S., Hansen M.M., Loeschcke V., Nielsen E.E., 2003, Long-term temporal changes of genetic composition in brown trout (Salmo trutta L.) populations inhabiting an unstable environment. Mol. Ecol. 12, 3123–3135. [CrossRef] [PubMed] [Google Scholar]
  • Palsbøll P.J., 1999, Genetic tagging: contemporary molecular ecology. Biol. J. Linn. Soc. 68, 3–22. [CrossRef] [Google Scholar]
  • Palsbøll P.J., Allen J., Bérubé M., Clapham P.J., Feddersen T.P., Hammondk P.S., Hudson R.R., Jørgensen H., Katona S., Larsen A.H., Larsen F., Lien J., Mattila D.K., Sigurjonnsson J., Sears R., Smith T., Sponer R., Stevick P., Øien N., 1997, Genetic tagging of humpback whales. Nature 388, 767–769. [CrossRef] [PubMed] [Google Scholar]
  • Palsbøll P.J., Bérubé M., Allendorf F.W., 2007, Identification of management units using population genetic data. Trends Ecol. Evol. 22, 11–16. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Pauly D., Christensen V., Dalsgaard J., Froese R., Torres Jr F.C., 1998, Fishing down marine food webs. Science 279, 860–863. [CrossRef] [PubMed] [Google Scholar]
  • Pérez-Ruzafa Á., González-Wangüemert M., Lenfant P., Marcos C., García-Charton J.A., 2006, Effects of fishing protection on the genetic structure of fish populations. Biol. Conserv. 129, 244–255. [CrossRef] [Google Scholar]
  • Petit E., Valiere N., 2006, Estimating population size with noninvasive capture-mark-recapture data. Conserv. Biol. 20, 1062–1073. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Pollock K.H., 2000, Capture-recapture models. Am. Stat. Assoc. 95, 293–296. [CrossRef] [Google Scholar]
  • Porch C.E., 2005, The sustainability of Western Atlantic bluefin tuna: a warm blooded fish in a hot blooded fishery. Bull. Mar. Sci. 76, 363–384. [Google Scholar]
  • Prince E.D., Goodyear C.P., 2006, Hypoxia-based habitat compression of tropical pelagic fishes. Fish. Oceanogr. 15, 451–464. [CrossRef] [Google Scholar]
  • Queller D.C., Goodnight K.F., 1989, Estimating relatedness using genetic markers. Evolution 43, 258–275. [CrossRef] [PubMed] [Google Scholar]
  • Ramstad K.M., Woody C.A., Sage G.K., Allendorf F.W., 2004, Founding events influence genetic population structure of sockeye salmon (Oncorhynchus nerka) in Lake Clark Alaska. Mol. Ecol. 13, 277–290. [CrossRef] [PubMed] [Google Scholar]
  • Ritland K., 1996, A marker-based method for inferences about quantitative inheritance in natural populations. Evolution 50, 1062–1073. [CrossRef] [PubMed] [Google Scholar]
  • Ritland K., 2000, Marker-inferred relatedness as a tool for detecting heritability in nature. Mol. Ecol. 9, 1195–1204. [CrossRef] [PubMed] [Google Scholar]
  • Romanek C.S., Gauldie R.W., 1996, A predictive model of otolith growth in fish based on the chemistry of the endolymph. Comp. Bioch. Physiol. Part A: Physiol. 114, 71–79. [CrossRef] [Google Scholar]
  • Rooker J.R., Secor D.H., DeMetrio G., Schloesser R., Block B.A., Neilson J.D., 2008, Natal homing and connectivity in Atlantic bluefin tuna populations. Science 322, 742–744. [CrossRef] [PubMed] [Google Scholar]
  • Rooker J.R., Secor D.H., Zdanowicz V.S., De Metrio G., Orsi-Relini L., 2003, Identification of Atlantic bluefin tuna (Thunnus thynnus) stocks from putative nurseries using otolith chemistry. Fish. Oceanogr. 12, 75–84. [CrossRef] [Google Scholar]
  • Royer F., Fromentin J.-M., Gaspar P., 2005, A state/space model to derive bluefin tuna movement and habitat from archival tags. Oikos 109, 473–484. [CrossRef] [Google Scholar]
  • Ruzzante D.E., Mariani S., Bekkevold D., André C., Mosegaard H., Clausen L.A., Dahlgren T.G., Hutchinson W.F., Hatfield E.M.C., Torstensen E., Brigham J., Simmonds E.J., Laikre L., Larsson L.C., Stet R.J.M., Ryman N., Carvahlo G.R., 2006, Biocomplexity in a highly migratory pelagic marine fish Atlantic herring. Proc. R. Soc. B: Biol. Sci. 273, 1459–1464. [CrossRef] [Google Scholar]
  • Saenz-Agudelo P., Jones G.P., Thorrold S.R., Planes S., 2009, Estimating connectivity in marine populations: an empirical evaluation of assignment tests and parentage analysis under different gene flow scenarios. Mol. Ecol. 18, 1765–1776. [CrossRef] [PubMed] [Google Scholar]
  • Schwartz M.K., Luikart G., Waples R.S., 2007, Genetic monitoring as a promising tool for conservation and management. Trends Ecol. Evol. 22, 25–33. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Secor D.H., 2000, Longevity and resilience of Chesapeake Bay striped bass. ICES J. Mar. Sci. 57, 808–815. [CrossRef] [Google Scholar]
  • Sibert J.R., 2001, Electronic tagging and tracking in marine fisheries: introduction to the proceedings. In: Sibert J.R. Nielsen J.L. (Eds.) Electronic tagging and tracking in marine fisheries. Kluwer Academic Publishers Dordrecht, pp. 1–6. [Google Scholar]
  • Sibert J.R., Fournier D.A., 2001, Possible models for combining tracking data with conventional tagging data. In: Sibert J.R. Nielsen J.L. (Eds.) Electronic tagging and tracking in marine fisheries. Kluwer, Dordrecht, pp. 443–456. [Google Scholar]
  • Sibert J.R., Lutcavage M.E., Nielsen A., Brill R.W., Wilson S.G., 2006. Interannual variation in large-scale movement of Atlantic bluefin tuna (Thunnus thynnus) determined from pop-up satellite archival tags. Can. J. Fish. Aquat. Sci. 63, 2154–2166. [Google Scholar]
  • Sims D.W., Southall E.J., Humphries N.E., Hays G.C., Bradshaw C.J.A., Pitchford J.W., James A., Ahmed M.Z., Brierley A.S., Hindell M.A., Morritt D., Musyl M.K., Righton D., Shepard E.L.C., Wearmouth V.J., Wilson R.P., Witt M.J., Metcalfe J.D., 2008, Scaling laws of marine predator search behaviour. Nature 451, 1098–1102. [CrossRef] [PubMed] [Google Scholar]
  • Slatkin M., 1995, A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462. [PubMed] [Google Scholar]
  • Tsukamoto K., Nakai I., Tesch W.V., 1998, Do all freshwater eels migrate? Nature 396, 635–636. [CrossRef] [Google Scholar]
  • Turner T.F., Wares J.P., Gold J.R., 2002, Genetic effective size is three orders of magnitude smaller than adult census size in an abundant estuarine-dependent marine fish (Sciaenops ocellatus). Genetics 162, 1329–1339. [PubMed] [Google Scholar]
  • Turrell W.R., 2004, The policy basis of the “ecosystem approach” to fisheries management. EuroGGOS publ. 21. [Google Scholar]
  • Voegeli F.A., Smale M.J., Webber D.M., Andrade Y., O'Dor R.K., 2001, Ultrasonic telemetry tracking and automated monitoring technology for sharks. Environ. Biol. Fish. 60, 267–281. [CrossRef] [Google Scholar]
  • Wang J., 2002, An estimator for pairwise relatedness using molecular markers. Genetics 160, 1203–1215. [PubMed] [Google Scholar]
  • Waples R.S., 2002, Effective size of fluctuating salmon populations. Genetics 161, 783–791. [PubMed] [Google Scholar]
  • Waples R.S., Punt A.E., Cope J.M., 2008, Integrating genetic data into management of marine resources: how can we do it better? Fish Fish. 9, 423–449. [Google Scholar]
  • Willis J., 2008, Simulation model of universal law of school size distribution applied to southern bluefin tuna (Thunnus maccoyii) in the Great Australian Bight. Ecol. Model. 213, 33–44. [CrossRef] [Google Scholar]
  • Woods J.G., Paetkau D., Lewis D., McLellan B.N., Proctor M., Strobeck C., 1999, Genetic tagging of free-ranging black and brown bears. Wildlife Soc. Bull. 27, 616–627. [Google Scholar]
  • Wright S., 1938, Size of population and breeding structure in relation to evolution. Science 87, 430–431. [Google Scholar]
  • Wright S., 1951, The genetical structure of populations. Ann. Eugen. 15, 323–354. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.