Free Access
Aquat. Living Resour.
Volume 22, Number 3, July-September 2009
Page(s) 273 - 280
Published online 01 September 2009
  • Appelberg M., Berger H.M., Hesthagen K.E., Kurkilahti M., Raitaniemi J., Rask M., 1995, Development and intercalibration of methods in Nordic freshwater fish monitoring. Water, Air Soil Pollut. 85, 401–406. [Google Scholar]
  • Carpenter S.R., Kitchell J.F., 1993, The trophic cascade in lakes. Cambridge University Press, Cambridge. [Google Scholar]
  • Cochrane N.A., Sameoto D., Herman A.W., Neilson J., 1991, Multiple-frequency acoustic backscattering and zooplankton aggregations in the inner Scotian Shelf basins. Can. J. Fish. Aquat. Sci. 48, 340–355. [CrossRef] [Google Scholar]
  • Dini M.L., Carpenter S.R., 1990, The effect on whole-lake fish community manipulations on Daphnia migratory behavior. Limnol. Oceanogr. 36, 370–377. [CrossRef] [Google Scholar]
  • Eckmann R., 1998, Allocation of echointegrator output to small juvenile insects (Chaoborus sp.) and medium-sized (juvenile fish) targets. Fish. Res. 35, 107–113. [Google Scholar]
  • Everson I., Goss C., Murray W.A., 1993, Comparison of krill (Euphausia superba) density estimates using 38 and 120 kHz echosounders. Mar. Biol. 116, 269–275. [CrossRef] [Google Scholar]
  • Everson I., Tarling G.A., Bergstrøm B., 2007, Improving acoustic estimates of krill: experience from repeat sampling of northern krill (Meganyctiphanes norvegica) in Gullmarsfjord, Sweden. ICES J. Mar. Sci. 64, 39–48. [Google Scholar]
  • Fernandes P.G., Korneliussen R.J., Lebourges-Dhaussy A., Masse J., Iglesias M., Diner N., Ona E., Knutsen T., Gajate J., Ponce R., 2006, The SIMFAMI project: Species identification methods from acoustic multifrequency information. Final report to the EC No. Q5RS-2001-02054. [Google Scholar]
  • Foote K.G., 1982, Optimizing copper spheres for precision calibration of hydroacoustic equipment. J. Acoust. Soc. Am. 71, 742–747. [CrossRef] [Google Scholar]
  • Foote K.G., 1985, Rather-high-frequency sound scattering by swimbladdered fish. J. Acoust. Soc. Am. 78, 688–699. [CrossRef] [Google Scholar]
  • Foote K.G., Knudsen H.P., Vestnes G., MacLennan D.N., Simmonds E.J., 1987, Calibration of acoustic instruments for fish density estimation: a practical guide. ICES Coop. Res. Rep. 144. [Google Scholar]
  • Furusawa M., 1991, Designing quantitative echo sounders. J. Acoust. Soc. Am. 90, 26-36. [CrossRef] [Google Scholar]
  • Gal G., Loew E.R., Rudstam L.G., Mohammadian A.M., 1999, Light and diel vertical migration: spectral sensitivity and light avoidance by Mysis relicta. Can. J. Fish. Aquat. Sci. 56, 312–322. [Google Scholar]
  • Hamley J.M., 1975, Review of gillnet selectivity. J. Fish. Res. Board Can. 32, 1943–1969. [Google Scholar]
  • Jones I.S.F., Xie J., 1994, A sound scattering layer in a freshwater reservoir. Limnol. Oceanogr. 39, 443–448. [CrossRef] [Google Scholar]
  • Jurvelius J., Knudsen F.R., Balk H., Marjomäki T.J., Peltonen H., Taskinen J., Tuomaala A., Viljanen M., 2008, Echo-sounding can discriminate between fish and macroinvertebrates in fresh water. Freshw. Biol. 53, 912–923. [CrossRef] [Google Scholar]
  • Kaartvedt S., Røstad A., Fiksen Ø., Melle W., Torgersen T., Tiseth Breien M., Klevjer T.A., 2005, Piscivorous fish patrol krill swarms. Mar. Ecol. Prog. Ser. 299, 1–5. [CrossRef] [Google Scholar]
  • Kang M., Furusawa M., Miyashita K., 2002, Effective and accurate use of difference in mean volume backscattering strength to identify fish and plankton. ICES J. Mar. Sci. 59, 794–804. [CrossRef] [Google Scholar]
  • Knudsen F.R., Sægrov H., 2002, Benefits from horizontal beaming during acoustic survey: application to three Norwegian lakes. Fish. Res. 56, 205-211. [CrossRef] [Google Scholar]
  • Knudsen F.R., Larsson P., Jakobsen P.J., 2006, Acoustic scattering from a larval insect (Chaoborus flavicans) at six echosounder frequencies: Implication for acoustic estimates of fish abundance. Fish. Res. 79, 84–89. [CrossRef] [Google Scholar]
  • Korneliussen R.J., Ona E., 2002, An operational system for processing and visualizing multi-frequency acoustic data. ICES J. Mar. Sci. 59, 293–313. [CrossRef] [Google Scholar]
  • LaRow E.J., 1970, The effect of oxygen tension on the vertical migration of Chaoborus larvae. Limnol. Oceanogr. 15, 357–362. [CrossRef] [Google Scholar]
  • Linløkken A., Haugen T.O., 2006, Density and temperature dependence of gill net catch per unit effort in perch, Perca fluviatilis, and roach, Rutilus rutilus. Fish. Manag. Ecol. 13, 261–269. [Google Scholar]
  • Liljendahl-Nurminen A., Horppila J., Eloranta P., Malinen T., Uusitalo L., 2002, The seasonal dynamics and distribution of Chaoborus flavicans larvae in adjacent lake basins of different morphometry and degree of eutrophication. Freshw. Biol. 47, 1283-1295. [CrossRef] [Google Scholar]
  • MacLennan D.N., Fernandes P.G., Dalen J., 2002, A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369. [Google Scholar]
  • Malinen T., Horppila J., Liljendahl-Nurminen A., 2001, Langmuir circulations disturb the low-oxygen refuge of phantom midge larvae. Limnol. Oceanogr. 46, 689–692. [CrossRef] [Google Scholar]
  • Malinen T., Tuomaala A., Peltonen H., 2005, Hydroacoustic stock assessment in the presence of dense aggreations of Chaoborus larvae. Can. J. Fish. Aquat. Sci. 62, 245–249. [CrossRef] [Google Scholar]
  • Malueg K.W., Hasler A.D., 1966, Echosounder studies on diel vertical movements of Chaoborus larvae in Wisconsin (USA) lakes. Verh. Int. Ver. Limnol. 16, 1697–1708. [Google Scholar]
  • McKelvey D.R., Wilson C.D., 2006, Discriminant classification of fish and zooplankton backscattering at 38 and 120 kHz. Trans. Am. Fish. Soc. 135, 488–499. [CrossRef] [Google Scholar]
  • Mehner T., Hölker F., Kasprzak P., 2005, Spatial and temporal heterogeneity of trophic variables in a deep lake as reflected by repeated singular samplings. Oikos 108, 401–409. [CrossRef] [Google Scholar]
  • Melnik N., Timoshkin O., Sideleva V., Pushkin S., Mamylov V., 1993, Hydroacoustic measurement of the density of the Baikal macrozooplankter Macrohectopus branickii. Limnol. Oceanogr. 38, 425–434. [CrossRef] [Google Scholar]
  • Miyashita K., Aoki I., Seno K., Taki K., Ogishima T., 1997, Acoustic identification of isada krill, Euphausia pacifica Hansen, off the Sanriku coast, Northeast. Japan. Fish. Ocean. 6, 266–271. [CrossRef] [Google Scholar]
  • Northcote T.G., 1964, Use of a high-frequency echosounder to record distribution and migration of Chaoborus larvae. Limnol. Oceanogr. 9, 87–91. [CrossRef] [Google Scholar]
  • Ona E., Mitson R.B., 1996, Acoustic sampling and signal processing near the seabed: the deadzone revisited. ICES J. Mar. Sci. 53, 677-690. [CrossRef] [Google Scholar]
  • Pedersen G., Korneliussen R.J., Ona E. 2004, The relative frequency response, as derived from individually separated targets on cod, saithe and Norway pout. ICES CM2004/R:16 [Google Scholar]
  • Pinel-Alloul B., 1995, Spatial heterogeneity as a multiscale characteristic of zooplankton community. Hydrobiologia 300/301, 17–42. [Google Scholar]
  • Pope G.F., Carter J.H.C., Power G., 1973, The influence of fish on the distribution of Chaoborus spp. (Diptera) and density of larvae in the Matamek River System, Quebec. Trans. Am. Fish. Soc. 4, 707–714. [CrossRef] [Google Scholar]
  • Rahel F.J., Nutzman J.W., 1994, Foraging in a lethal environment: fish predation in hypoxic waters of a stratified lake. Ecology 75, 1246–1253. [CrossRef] [Google Scholar]
  • Rudstam L.G., Magnusson J.J., Tonn W.M., 1984, Size selectivity of passive fishing gears: a correction for encounter probability applied to gill nets. Can. J. Fish. Aquat. Sci. 41, 1252–1255. [CrossRef] [Google Scholar]
  • Rudstam L.G., Schaner T., Gal G., Boscarino B.T., O'Gorman R., Warder D.M., Johannsson O.E, Bowen K.L., 2008a, Hydroacoustic measure of Mysis relicta abundance and distribution in Lake Ontario. Aquat. Ecosyst. Health Manage. 11, 355–363. [CrossRef] [Google Scholar]
  • Rudstam L.G., Knudsen F.R., Balk H., Gal G., Boscarino B.T., Axenrot T., 2008b, Acoustic characterization of Mysis relicta at multiple frequencies. Can. J. Fish. Aquat. Sci. 65, 2769–2779. [CrossRef] [Google Scholar]
  • Schindler D.W., 1969, Two useful devices for vertical plankton and water sampling. J. Fish. Res. Board Can. 26, 1948–1955. [Google Scholar]
  • Simrad EK500 Scientific Echo Sounder. Instruction manual. Simrad, Horten, Norway. [Google Scholar]
  • Sonny D., Knudsen F.R., Enger P.S., Kvernstuen T., Sand O., 2006, Reactions of cyprinids to infrasound in a lake and at the cooling water inlet of a nuclear power plant. J. Fish. Biol. 69, 735–748. [Google Scholar]
  • Teraguchi S., 1975, Correction of negative buoyancy in the phantom larva, Chaoborus americanus. J. Insect Physiol. 21, 1659–1670. [CrossRef] [Google Scholar]
  • Teraguchi M., Northcote T.G., 1966, Vertical distributions and migration of Chaoborus flavicans larvae in Corbett Lake, British Columbia. Limnol. Oceanogr. 11, 164–176. [CrossRef] [Google Scholar]
  • Threlkeld S.T., 1979, The midsummer dynamics of two Daphnia species in Wintergreen Lake, Michigan. Ecology 60, 165–179. [CrossRef] [Google Scholar]
  • Trevorrow M.V., Tanaka, Y., 1997, Acoustic and in situ measurements of freshwater amphipods (Jesogammarus annandalei) in Lake Biwa, Japan. Limnol. Oceanogr. 42, 121–132. [CrossRef] [Google Scholar]
  • Voss S., Mumm H., 1999, Where to stay by night and day: size specific and seasonal difference in horizontal and vertical distribution of Chaoborus flavicans larvae. Freshw. Biol. 42, 201–213. [CrossRef] [Google Scholar]
  • Zaret T.M., 1980, Predation and freshwater communities. Yale University Press, New Haven, London. [Google Scholar]
  • Økland J., 1964, The eutrophic Lake Borrevann (Norway) - an ecological study on shore and bottom fauna with special reference to gastropods, including a hydrographic survey. Folia Limnol. Scand. 13, 1–337. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.