Free Access
Issue
Aquat. Living Resour.
Volume 19, Number 3, July-September 2006
Page(s) 195 - 206
DOI https://doi.org/10.1051/alr:2006020
Published online 25 November 2006
  • Altmann E.G., Kantz H., 2005, Recurrence time analysis, long-term correlations, and extreme events. Phys. Rev. E 71, 056106. [CrossRef] [MathSciNet] [Google Scholar]
  • Ariño A., Pimm S.L., 1995, On the nature of population extremes. Evol. Ecol. 9, 429-443. [CrossRef] [Google Scholar]
  • Barabási A.-L., 2005, The origin of bursts and heavy tails in human dynamics. Nature 435, 207-211. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Beddington J.R., Cooke J.G., 1983, The potential yield of fish stocks. FAO Fish. Tech. Pap. No. 242. FAO, Rome. [Google Scholar]
  • Bouchaud J.-P., Potters M., 2000, Theory of Financial Risks: From Statistical Physics to Risk Management, Cambridge University Press, Cambridge, UK. [Google Scholar]
  • Bunde A., Eichner J.F., Kantelhardt J.W., Havlin S., 2005, Long-term memory: a natural mechanism for the clustering of extreme events and anomalous residual times in climate records. Phys. Rev. Lett. 94, 048701. [CrossRef] [PubMed] [Google Scholar]
  • Caputi N., 1988, Factors affecting the time series bias in stock-recruitment relationships and the interaction between time series and measurement error bias. Can. J. Fish. Aquat. Sci. 45, 178-184. [Google Scholar]
  • Cramér H., 1938, Sur un nouveau théorème-limite de la théorie des probabilités. Actualités Sci. Indust. 736, 5-23. [Google Scholar]
  • Daan N., Fogarty M.J., 2000, Recruitment dynamics of exploited marine populations: physical-biological interactions-foreword and symposium overview. ICES J. Mar. Sci. 57, 189-190. [CrossRef] [Google Scholar]
  • Deriso R.B., 1980, Harvesting strategies and parameter estimation for as age-structured model. Can. J. Fish. Aquat. Sci. 37, 268-282. [CrossRef] [Google Scholar]
  • Dixon P.A., Milicich M.J., Sugihara G., 1999, Episodic fluctuations in larval supply. Science 283, 1528-1530. [CrossRef] [PubMed] [Google Scholar]
  • Doherty P.J., Williams D.M., 1988, The replenishment of coral reef fish populations. Oceanogr. Mar. Biol. Ann. Rev. 26, 487-551. [Google Scholar]
  • Fogarty, M.J., 1993a, Recruitment in randomly varying environments. ICES J. Mar. Sci. 50, 247-260. [CrossRef] [Google Scholar]
  • Fogarty M.J., 1993b, Recruitment distributions revisited. Can. J. Fish. Aquat. Sci. 50, 2723-2728. [CrossRef] [Google Scholar]
  • Fogarty M.J., 2001, Recruitment dynamics of exploited marine populations: physical-biological interactions. part 2-introduction. ICES J. Mar. Sci. 58, 936. [CrossRef] [Google Scholar]
  • Fogarty M.J., Sissenwine M.P., Cohen E.B., 1991, Recruitment variability and the dynamics of exploited marine populations. Trends Ecol. Evol. 6, 241-246. [CrossRef] [PubMed] [Google Scholar]
  • Frisch U., Sornette, D. 1997. Extreme deviations and applications. J. Phys. I France 7, 1155-1171. [Google Scholar]
  • Gracia, A. 1991, Spawning stock-recruitment relationships of white shrimp in the southwestern Gulf of Mexico. Trans. Am. Fish. Soc. 120, 519-527. [Google Scholar]
  • Halley J., Inchausti, P. 2002. Lognormality in ecological time series. Oikos 99, 518-530. [Google Scholar]
  • Hancock D.A., 1973, The relationship between stock and recruitment in exploited invertebrates. Rapp. P.-V. Réun. Cons. Int. Explor. Mer 164, 113-131. [Google Scholar]
  • Hennemuth R.C., Palmer J.E., Brown B.E., 1980, A statistical description of recruitment in eighteen selected fish stocks. J. Northw. Atl. Fish. Sci. 1, 101-111. [CrossRef] [Google Scholar]
  • Hurst H.E., 1951, Long-term storage capacity of reservoirs. Trans. Am. Soc. Civil Engrs. 116, 770-808. [Google Scholar]
  • Iles T.C., Beverton, R.J.H., 2000, The concentration hypothesis: the statistical evidence. ICES J. Mar. Sci. 57, 216-227. [CrossRef] [Google Scholar]
  • Inchausti P., Halley, J. 2001, Investigating long-term ecological variability using the Global Population Dynamics Database. Science 293, 655-657. [Google Scholar]
  • Inchausti P., Halley, J., 2002, The long-term temporal variability and spectral color of animal populations. Evol. Ecol. Res. 4, 1033-1048. [Google Scholar]
  • Johansen A., Sornette D., 2001, Large stock market price drawdowns are outliers. J. Risk 4, 69-110. [Google Scholar]
  • Katz R.W., Brush G.S., Parlange M.B., 2005, Statistics of extremes: modeling ecological disturbances. Ecology 86, 1124-1134. [CrossRef] [Google Scholar]
  • Laherrère J.H., Sornette D., 1998, Stretched exponential distributions in nature and economy: “fat tails” with characteristic scales. Eur. Phys. J. B 2, 525-539. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • MacArthur R.H., 1960, On the relative abundance of species. Am. Nat. 94, 25-36. [CrossRef] [Google Scholar]
  • MacCall A.D., 1999, Use of decision tables to develop a precautionary approach to problems in behavior, life history and recruitment variability. In: Restrepo, V. R. (Ed.), Proceedings of the Fifth National NMFS Stock Assessment Workshop, NOAA Tech. Memo. NMFS-F/SPO-40. U.S. Dep. Commer., pp. 53-64. [Google Scholar]
  • Mandelbrot B.B., 1983, The Fractal Geometry of Nature. W. H. Freedman and Company, New York. [Google Scholar]
  • Mertz G., Myers R.A., 1996, Influence of fecundity on recruitment variability of marine fish. Can. J. Fish. Aquat. Sci. 53, 1618-1625. [CrossRef] [Google Scholar]
  • Myers R.A., Barrowman N.J., Hutchings J.A., Rosenberg A.A., 1995, Population dynamics of exploited fish stocks at low population levels. Science 269, 1106-1108. [CrossRef] [PubMed] [Google Scholar]
  • Niwa H.-S., 2006, Exploitation dynamics of fish stocks. Ecol. Informatics 1, 87-99. [CrossRef] [Google Scholar]
  • Penn J.W., Caputi N., 1986, Spawning stock-recruitment relationships and environmental influences on the tiger prawn (Penaeus esculentus) fishery in Exmouth Gulf, western Australia. Aust. J. Mar. Freshw. Res. 37, 491-505. [CrossRef] [Google Scholar]
  • Power M., 1996, The testing and selection of recruitment distributions for North Atlantic fish stocks. Fish. Res. 25, 77-95. [CrossRef] [Google Scholar]
  • Preston F.W., 1962, The canonical distribution of commonness and rarity. Ecology 43, 185-215, 410-432. [CrossRef] [Google Scholar]
  • Quinn T.J., Deriso R.B., 1999, Quantitative Fish Dynamics. Oxford University Press, New York. [Google Scholar]
  • Ricker W.E., 1954, Stock and recruitment. J. Fish. Res. Board Can. 11, 559-623. [Google Scholar]
  • Ricker W.E., 1997, Cycles of abundance among Fraser River sockeye salmon (Oncorhynchus nerka). Can. J. Fish. Aquat. Sci. 54, 950-968. [CrossRef] [Google Scholar]
  • Ripley B.J., Caswell H., 2006, Recruitment variability and stochastic population growth of the soft-shell clam, Mya arenaria. Ecol. Model. 193, 517-530. [CrossRef] [Google Scholar]
  • Rothschild B.J., 2000, “Fish stocks and recruitment”: the past thirty years. ICES J. Mar. Sci. 57, 191-201. [CrossRef] [Google Scholar]
  • Shelton P.A., 1992, The shape of recruitment distributions. Can. J. Fish. Aquat. Sci. 49, 1754-1761. [CrossRef] [Google Scholar]
  • Shepherd J.G., Cushing D.H., 1990, Regulation in fish populations: myth or mirage? Phil. Trans. R. Soc. Lond. B 330, 151-164. [CrossRef] [Google Scholar]
  • Shojima E., Otaki H., 1982, Stock assessment of the Korai prawn, Penaeus orientalis. Bull. Seikai Reg. Fish. Res. Lab. Japan 58, 23-51. [Google Scholar]
  • Sugihara G., 1980, Minimal community structure: an explanation of species abundance. Am. Nat. 116, 770-787. [CrossRef] [PubMed] [Google Scholar]
  • Winemiller K.O., Rose K.A., 1993, Why do most fish produce so many tiny offspring? Am. Nat. 142, 585-603. [CrossRef] [Google Scholar]
  • Yamasaki K., Muchnik L., Havlin S., Bunde A., Stanley H.E., 2005, Scaling and memory in volatility return intervals in financial markets. Proc. Natl. Acad. Sci. USA 102, 9424-9428. [CrossRef] [Google Scholar]
  • Zheng J., Murphy M.C., Kruse G.H., 1995, Updated length-based population model and stock-recruitment relationships for red king crab in Bristol Bay, Alaska. Alaska Fish. Res. Bull. 2, 114-124. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.