Issue |
Aquat. Living Resour.
Volume 11, Number 4, July 1998
Nutritional Strategies and Management of Aquaculture Waste
|
|
---|---|---|
Page(s) | 289 - 295 | |
DOI | https://doi.org/10.1016/S0990-7440(98)80014-4 | |
Published online | 15 July 1998 |
Biogas production from solid wastes removed from fish farm effluents
Animal Production Science Department Udine University, Via S. Mauro 2, 33010 Pagnacco (UD), Italy
Received:
9
January
1998
Accepted:
21
April
1998
An experimental small scale partial recirculating system for rainbow trout was assembled. The system components were two 1.3-m3 fish tanks with sloping bottoms, each connected to a sedimentation column and containing 50 kg rainbow trout biomass, an anaerobic up-flow digester (total volume 0.424 m3, available volume 0.382 m3) connected to the funnel shaped bottom of the sedimentation column by means of a peristaltic pump, an aerobic submerged plug-flow filter (total volume 1 m3; filled with 0.83 m3 plastic rings with a specific surface of 194 m2·m−3) and a submerged pump. Aeration was provided through porous stones. The anaerobic digester was filled with 35 mm cubes of expanded polyurethane foam (25 pores·cm−2, specific surface 1.375 m2·m−3, filtering volume 0.291 m3) and kept at a temperature of 24−25 °C using an electric heater. The gas chamber at the top of the anaerobic digester was connected to a gas meter and to an infrared continuous gas analyser. Measures on system performance with a recirculation rate of 60 % were done following three feeding levels (1, 1.5 and 2 % live weight). At the highest feeding rate, 2.8 L of faecal sludge collected from the trout tanks were pumped every four hours in the anaerobic digester. Slurry characteristic were: total N 0.197 g·L−1, TAN 0.014 g·L−1, volatile solids (VS) 16.91 g·L−1, suspended solids (SS) 21.39 g·L−1 and pH 6.9. Biogas production was 144 L·d−1 (mean value) with a methane content higher than 80 %. Methane volumetric production was 0.3 m3·m−3·d−1 and methane daily yield was 0.4 and 0.32 m3·kg−1 VS and SS respectively. After passing through the anaerobic digester, effluents were characterized by a total N content of 0.243 g·L−1, TAN 0.222 g·L−1, VS 1.1 g·L−1, SS 1.32 g·L−1 and pH 6.8. The anaerobic digester was able to significantly reduce VS and SS content of wastewater and the zeolite ion-exchange column significantly improved water quality of effluent produced by the digester. The aerobic biofilter significantly reduced the ammonia content of the water leaving the fish tanks.
Key words: Fish wastewater treatment / aerobic submerged plug-flow filter / anaerobic digester / biogas production / zeolite exchange column / rainbow trout
© Elsevier, IRD, Inra, Ifremer, Cemagref, CNRS, 1998
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.