Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

This article has been cited by the following article(s):

A heuristic approach to predicting water beetle diversity in temporary and fluctuating waters

Juan C. Gutiérrez-Estrada and David T. Bilton
Ecological Modelling 221 (11) 1451 (2010)
DOI: 10.1016/j.ecolmodel.2010.03.007
See this article

Modelling the factors that influence fish guilds composition using a back-propagation network: Assessment of metrics for indices of biotic integrity

Alonso Aguilar Ibarra, Muriel Gevrey, Young-Seuk Park, Puy Lim and Sovan Lek
Ecological Modelling 160 (3) 281 (2003)
DOI: 10.1016/S0304-3800(02)00259-4
See this article

Artificial neural networks as a tool in ecological modelling, an introduction

Sovan Lek and J.F. Guégan
Ecological Modelling 120 (2-3) 65 (1999)
DOI: 10.1016/S0304-3800(99)00092-7
See this article

Modelling water quality, bioindication and population dynamics in lotic ecosystems using neural networks

Ingrid M. Schleiter, Dietrich Borchardt, Rüdiger Wagner, et al.
Ecological Modelling 120 (2-3) 271 (1999)
DOI: 10.1016/S0304-3800(99)00108-8
See this article

Historical use, fishing management and lake characteristics explain the presence of non-native trout in Pyrenean lakes: Implications for conservation

Alexandre Miró and Marc Ventura
Biological Conservation 167 17 (2013)
DOI: 10.1016/j.biocon.2013.07.016
See this article

Predicting local fish species richness in the garonne river basin

Sylvain Mastrorillo, Francis Dauba, Thierry Oberdorff, Jean-Francois Guégan and Sovan Lek
Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie 321 (5) 423 (1998)
DOI: 10.1016/S0764-4469(98)80307-7
See this article

A Survey of Applications of Artificial Intelligence Algorithms in Eco-environmental Modelling

Kang-Suk Kim and Joon-Hong Park
Environmental Engineering Research 14 (2) 102 (2009)
DOI: 10.4491/eer.2009.14.2.102
See this article

Estimating fish community diversity from environmental features in the Tagus estuary (Portugal): Multiple Linear Regression and Artificial Neural Network approaches

J. C. Gutiérrez-Estrada, R. Vasconcelos and M. J. Costa
Journal of Applied Ichthyology 24 (2) 150 (2008)
DOI: 10.1111/j.1439-0426.2007.01039.x
See this article

Generalizability of artificial neural network models in ecological applications: Predicting nest occurrence and breeding success of the red-winged blackbird Agelaius phoeniceus

Uygar Özesmi, Can O. Tan, Stacy L. Özesmi and Raleigh J. Robertson
Ecological Modelling 195 (1-2) 94 (2006)
DOI: 10.1016/j.ecolmodel.2005.11.013
See this article

Support vector machines to model presence/absence of Alburnus alburnus alborella (Teleostea, Cyprinidae) in North-Western Italy: Comparison with other machine learning techniques

Tina Tirelli, Marco Gamba and Daniela Pessani
Comptes Rendus Biologies 335 (10-11) 680 (2012)
DOI: 10.1016/j.crvi.2012.09.001
See this article

Use of different approaches to model presence/absence of Salmo marmoratus in Piedmont (Northwestern Italy)

Tina Tirelli, Luca Pozzi and Daniela Pessani
Ecological Informatics 4 (4) 234 (2009)
DOI: 10.1016/j.ecoinf.2009.07.003
See this article

Biologically-inspired machine learning implemented to ecological informatics

Young-Seuk Park and Tae-Soo Chon
Ecological Modelling 203 (1-2) 1 (2007)
DOI: 10.1016/j.ecolmodel.2006.05.039
See this article

An artificial neural network approach to spatial habitat modelling with interspecific interaction

Stacy L Özesmi and Uygar Özesmi
Ecological Modelling 116 (1) 15 (1999)
DOI: 10.1016/S0304-3800(98)00149-5
See this article

Ensembled artificial neural networks to predict the fitness score for body composition analysis

X. R. Cui, M. F. Abbod, Q. Liu, et al.
The journal of nutrition, health & aging 15 (5) 341 (2011)
DOI: 10.1007/s12603-010-0260-1
See this article

Predictability of marine nematode biodiversity

Bea Merckx, Peter Goethals, Maaike Steyaert, et al.
Ecological Modelling 220 (11) 1449 (2009)
DOI: 10.1016/j.ecolmodel.2009.03.016
See this article

Modeling of Cyanobacterial Blooms in Hypereutrophic Lake Dianchi, China

Guoxiang Hou, Lirong Song, Jiantong Liu, Bangding Xiao and Yongding Liu
Journal of Freshwater Ecology 19 (4) 623 (2004)
DOI: 10.1080/02705060.2004.9664743
See this article

Modelling of Cr2N Age-precipitation in High Nitrogen Stainless Steels by Neural Networks

N. S. Reddy, I. Dzhebyan, Jae Sang Lee and Yang Mo Koo
ISIJ International 50 (2) 279 (2010)
DOI: 10.2355/isijinternational.50.279
See this article

Catastrophic-like shifts in shallow Turkish lakes: a modeling approach

Can Ozan Tan and Meryem Beklioglu
Ecological Modelling 183 (4) 425 (2005)
DOI: 10.1016/j.ecolmodel.2004.07.033
See this article

The use of artificial neural networks to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake

Sébastien Brosse, Jean-François Guegan, Jean-Nöel Tourenq and Sovan Lek
Ecological Modelling 120 (2-3) 299 (1999)
DOI: 10.1016/S0304-3800(99)00110-6
See this article

Modeling complex nonlinear responses of shallow lakes to fish and hydrology using artificial neural networks

Can Ozan Tan and Meryem Beklioglu
Ecological Modelling 196 (1-2) 183 (2006)
DOI: 10.1016/j.ecolmodel.2006.02.003
See this article

Prediction ability and sensitivity of artificial intelligence-based habitat preference models for predicting spatial distribution of Japanese medaka (Oryzias latipes)

Shinji Fukuda and Kazuaki Hiramatsu
Ecological Modelling 215 (4) 301 (2008)
DOI: 10.1016/j.ecolmodel.2008.03.022
See this article

Performance comparison among multivariate and data mining approaches to model presence/absence of Austropotamobius pallipes complex in Piedmont (North Western Italy)

Tina Tirelli, Livio Favaro, Marco Gamba and Daniela Pessani
Comptes Rendus Biologies 334 (10) 695 (2011)
DOI: 10.1016/j.crvi.2011.07.002
See this article

An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data

Julian D Olden, Michael K Joy and Russell G Death
Ecological Modelling 178 (3-4) 389 (2004)
DOI: 10.1016/j.ecolmodel.2004.03.013
See this article

Instream physical habitat modelling types: an analysis as stream hydromorphological modelling tools for EU water resource managers

John Conallin, Eva Boegh and Jorgen Kroegsgaard Jensen
International Journal of River Basin Management 8 (1) 93 (2010)
DOI: 10.1080/15715121003715123
See this article

Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with a Himalayan river bird

Stéphanie Manel, Jean-Marie Dias and Steve J. Ormerod
Ecological Modelling 120 (2-3) 337 (1999)
DOI: 10.1016/S0304-3800(99)00113-1
See this article

Estimations of trout density and biomass: a neural networks approach

Sovan Lek and Philippe Baran
Nonlinear Analysis: Theory, Methods & Applications 30 (8) 4985 (1997)
DOI: 10.1016/S0362-546X(96)00291-X
See this article

Predictive models in ecology: Comparison of performances and assessment of applicability

Can Ozan Tan, Uygar Özesmi, Meryem Beklioglu, Esra Per and Bahtiyar Kurt
Ecological Informatics 1 (2) 195 (2006)
DOI: 10.1016/j.ecoinf.2006.03.002
See this article

Introducing run-size driven fisheries management for the coastal fishery of Atlantic salmon: Preseason forecasts for policy makers

Petri Suuronen and Pekka Jounela
Marine Policy 34 (3) 679 (2010)
DOI: 10.1016/j.marpol.2009.12.009
See this article

A review of ecological models for brown trout: towards a new demogenetic model

Béatrice M. Frank, John J. Piccolo and Philippe V. Baret
Ecology of Freshwater Fish 20 (2) 167 (2011)
DOI: 10.1111/j.1600-0633.2011.00491.x
See this article

Ecological Informatics

M. Gevrey, S. Lek and T. Oberdorff
Ecological Informatics 233 (2003)
DOI: 10.1007/978-3-662-05150-4_12
See this article

The application of Artificial Neural Network (ANN) model to the simulation of denitrification rates in mesocosm-scale wetlands

Keunyea Song, Young-Seuk Park, Fawen Zheng and Hojeong Kang
Ecological Informatics 16 10 (2013)
DOI: 10.1016/j.ecoinf.2013.04.002
See this article

Predicting the structure and diversity of young-of-the-year fish assemblages in large rivers

R. E. Gozlan, S. Mastrorillo, G. H. Copp and S. Lek
Freshwater Biology 41 (4) 809 (1999)
DOI: 10.1046/j.1365-2427.1999.00423.x
See this article

Effective prediction of biodiversity in tidal flat habitats using an artificial neural network

Jae-Won Yoo, Yong-Woo Lee, Chang-Gun Lee and Chang-Soo Kim
Marine Environmental Research 83 1 (2013)
DOI: 10.1016/j.marenvres.2012.10.001
See this article

Modelling primary production in a coastal embayment affected by upwelling using dynamic ecosystem models and artificial neural networks

Rosa M. Barciela, Emilio Garcı́a and Emilio Fernández
Ecological Modelling 120 (2-3) 199 (1999)
DOI: 10.1016/S0304-3800(99)00102-7
See this article

Predicting fish yield of African lakes using neural networks

Raymond Laë, Sovan Lek and Jacques Moreau
Ecological Modelling 120 (2-3) 325 (1999)
DOI: 10.1016/S0304-3800(99)00112-X
See this article

Using ecological niche models to predict the abundance and impact of invasive species: application to the common carp

Stefanie A. Kulhanek, Brian Leung and Anthony Ricciardi
Ecological Applications 21 (1) 203 (2011)
DOI: 10.1890/09-1639.1
See this article

Methodological issues in building, training, and testing artificial neural networks in ecological applications

Stacy L. Özesmi, Can O. Tan and Uygar Özesmi
Ecological Modelling 195 (1-2) 83 (2006)
DOI: 10.1016/j.ecolmodel.2005.11.012
See this article

A non-destructive morphometric technique to predict Ligula intestinalis L. plerocercoid load in roach (Rutilus rutilus L.) abdominal cavity

Géraldine Loot, Jean-Luc Giraudel and Sovan Lek
Ecological Modelling 156 (1) 1 (2002)
DOI: 10.1016/S0304-3800(02)00030-3
See this article

Microsatellites and artificial neural networks: tools for the discrimination between natural and hatchery brown trout (Salmo trutta, L.) in Atlantic populations

Didier Aurelle, Sovan Lek, Jean-Luc Giraudel and Patrick Berrebi
Ecological Modelling 120 (2-3) 313 (1999)
DOI: 10.1016/S0304-3800(99)00111-8
See this article

Consideration of fuzziness: Is it necessary in modelling fish habitat preference of Japanese medaka (Oryzias latipes)?

Shinji Fukuda
Ecological Modelling 220 (21) 2877 (2009)
DOI: 10.1016/j.ecolmodel.2008.12.025
See this article

Short-term forecasting of halibut CPUE: Linear and non-linear univariate approaches

Ivone Alejandra Czerwinski, Juan Carlos Gutiérrez-Estrada and José Antonio Hernando-Casal
Fisheries Research 86 (2-3) 120 (2007)
DOI: 10.1016/j.fishres.2007.05.006
See this article

A neural network for evaluating environmental impact of decoupling in rural systems

Andrea Bonfiglio
Computers, Environment and Urban Systems 35 (1) 65 (2011)
DOI: 10.1016/j.compenvurbsys.2010.06.004
See this article

Importance of feature selection in decision-tree and artificial-neural-network ecological applications. Alburnus alburnus alborella: A practical example

Tina Tirelli and Daniela Pessani
Ecological Informatics (2010)
DOI: 10.1016/j.ecoinf.2010.11.001
See this article

Using decision tree to develop a soil ecological quality assessment system for planning sustainable construction

Joonhong Park, Dongwon Ki, Kangsuk Kim, et al.
Expert Systems with Applications 38 (5) 5463 (2011)
DOI: 10.1016/j.eswa.2010.10.007
See this article

Use of decision tree and artificial neural network approaches to model presence/absence ofTelestes muticellusin piedmont (North-Western Italy)

Tina Tirelli and Daniela Pessani
River Research and Applications 25 (8) 1001 (2009)
DOI: 10.1002/rra.1199
See this article

Application Of Artificial Neural Network Models To Analyse The Relationships Between Gammarus pulex L. (Crustacea, Amphipoda) And River Characteristics

Andy P. Dedecker, Peter L. M. Goethals, Tom D'heygere, et al.
Environmental Monitoring and Assessment 111 (1-3) 223 (2005)
DOI: 10.1007/s10661-005-8221-6
See this article

Abundance, diversity, and structure of freshwater invertebrates and fish communities: An artificial neural network approach

Sebastien Brosse, Sovan Lek and Colin R. Townsend
New Zealand Journal of Marine and Freshwater Research 35 (1) 135 (2001)
DOI: 10.1080/00288330.2001.9516983
See this article

Modeling net ecosystem metabolism with an artificial neural network and Bayesian belief network

William A. Young, David F. Millie, Gary R. Weckman, et al.
Environmental Modelling & Software 26 (10) 1199 (2011)
DOI: 10.1016/j.envsoft.2011.04.004
See this article

Northern bobwhite (Colinus virginianus) abundance in relation to yearly weather and long-term climate patterns

Jeffrey J Lusk, Fred S Guthery and Stephen J DeMaso
Ecological Modelling 146 (1-3) 3 (2001)
DOI: 10.1016/S0304-3800(01)00292-7
See this article

Review and comparison of methods to study the contribution of variables in artificial neural network models

Muriel Gevrey, Ioannis Dimopoulos and Sovan Lek
Ecological Modelling 160 (3) 249 (2003)
DOI: 10.1016/S0304-3800(02)00257-0
See this article

Abundance versus presence/absence data for modelling fish habitat preference with a genetic Takagi–Sugeno fuzzy system

Shinji Fukuda, Ans M. Mouton and Bernard De Baets
Environmental Monitoring and Assessment 184 (10) 6159 (2012)
DOI: 10.1007/s10661-011-2410-2
See this article

Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks

Julian D Olden and Donald A Jackson
Ecological Modelling 154 (1-2) 135 (2002)
DOI: 10.1016/S0304-3800(02)00064-9
See this article

Predictive models of collembolan diversity and abundance in a riparian habitat

Sithan Lek-Ang, Louis Deharveng and Sovan Lek
Ecological Modelling 120 (2-3) 247 (1999)
DOI: 10.1016/S0304-3800(99)00106-4
See this article

Extracting the contribution of independent variables in neural network models: a new approach to handle instability

Juan de Oña and Concepción Garrido
Neural Computing and Applications 25 (3-4) 859 (2014)
DOI: 10.1007/s00521-014-1573-5
See this article

Synthesis, in vitro evaluation and QSAR modelling of potential antitumoral 3,4-dihydropyrimidin-2-(1H)-thiones

Mariana Matias, Gonçalo Campos, Adriana O. Santos, et al.
Arabian Journal of Chemistry 12 (8) 5086 (2019)
DOI: 10.1016/j.arabjc.2016.12.007
See this article

Modelling habitat requirements of white-clawed crayfish (Austropotamobius pallipes) using support vector machines

L. Favaro, T. Tirelli and D. Pessani
Knowledge and Management of Aquatic Ecosystems (401) 21 (2011)
DOI: 10.1051/kmae/2011037
See this article

Interpretation of ANN-based QSAR models for prediction of antioxidant activity of flavonoids

Petar Žuvela, Jonathan David and Ming Wah Wong
Journal of Computational Chemistry 39 (16) 953 (2018)
DOI: 10.1002/jcc.25168
See this article

Ecological informatics as an advanced interdisciplinary interpretation of ecosystems

Tae-Soo Chon and Young-Seuk Park
Ecological Informatics 1 (3) 213 (2006)
DOI: 10.1016/j.ecoinf.2006.02.007
See this article

Modelling of microhabitat used by fish in natural and regulated flows in the river Garonne (France)

Yorick Reyjol, Puy Lim, Alain Belaud and Sovan Lek
Ecological Modelling 146 (1-3) 131 (2001)
DOI: 10.1016/S0304-3800(01)00301-5
See this article

Potential antitumoral 3,4-dihydropyrimidin-2-(1H)-ones: synthesis, in vitro biological evaluation and QSAR studies

Mariana Matias, Gonçalo Campos, Adriana O. Santos, et al.
RSC Advances 6 (88) 84943 (2016)
DOI: 10.1039/C6RA14596E
See this article

Adoption of Machine Learning Techniques in Ecology and Earth Science

Anne Thessen
One Ecosystem 1 e8621 (2016)
DOI: 10.3897/oneeco.1.e8621
See this article


International Journal of Computational Intelligence and Applications 09 (01) 69 (2010)
DOI: 10.1142/S146902681000277X
See this article

Effects of sample size and network depth on a deep learning approach to species distribution modeling

Donald J. Benkendorf and Charles P. Hawkins
Ecological Informatics 60 101137 (2020)
DOI: 10.1016/j.ecoinf.2020.101137
See this article

Interpretation of Bayesian Neural Networks for Predicting the Duration of Detected Incidents

Hyoshin Park, Ali Haghani and Xin Zhang
Journal of Intelligent Transportation Systems 00 (2015)
DOI: 10.1080/15472450.2015.1082428
See this article

Development of artificial intelligence approach to forecasting oyster norovirus outbreaks along Gulf of Mexico coast

Shima Shamkhali Chenar and Zhiqiang Deng
Environment International 111 212 (2018)
DOI: 10.1016/j.envint.2017.11.032
See this article

Development of a multi-layer perceptron artificial neural network model to determine haul trucks energy consumption

Ali Soofastaei, Saiied M. Aminossadati, Mohammad M. Arefi and Mehmet S. Kizil
International Journal of Mining Science and Technology 26 (2) 285 (2016)
DOI: 10.1016/j.ijmst.2015.12.015
See this article

Sensitivity Analysis of the Artificial Neural Network Outputs in Friction Stir Lap Joining of Aluminum to Brass

Mohammad Hasan Shojaeefard, Mostafa Akbari, Mojtaba Tahani and Foad Farhani
Advances in Materials Science and Engineering 2013 1 (2013)
DOI: 10.1155/2013/574914
See this article

A State-Based Sensitivity Analysis for Distinguishing the Global Importance of Predictor Variables in Artificial Neural Networks

Ehsan Ardjmand, David F. Millie, Iman Ghalehkhondabi, William A. Young II and Gary R. Weckman
Advances in Artificial Neural Systems 2016 1 (2016)
DOI: 10.1155/2016/2303181
See this article

Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis

Madhavi Anushka Elangasinghe, Naresh Singhal, Kim N. Dirks and Jennifer A. Salmond
Atmospheric Pollution Research 5 (4) 696 (2014)
DOI: 10.5094/APR.2014.079
See this article

Application of an artificial neural network (ANN) model for predicting mosquito abundances in urban areas

Keun Young Lee, Namil Chung and Suntae Hwang
Ecological Informatics 36 172 (2016)
DOI: 10.1016/j.ecoinf.2015.08.011
See this article

Environmental indicators of oyster norovirus outbreaks in coastal waters

Shima Shamkhali Chenar and Zhiqiang Deng
Marine Environmental Research 130 275 (2017)
DOI: 10.1016/j.marenvres.2017.08.009
See this article

Artificial neural networks applied to port operability assessment

I. López, M. López and G. Iglesias
Ocean Engineering 109 298 (2015)
DOI: 10.1016/j.oceaneng.2015.09.016
See this article

Towards a physiological response of fishes under variable environmental conditions: An approach through neural network

Joyita Mukherjee, Mahammed Moniruzzaman, Suman Bhusan Chakraborty, Sovan Lek and Santanu Ray
Ecological Indicators 78 381 (2017)
DOI: 10.1016/j.ecolind.2017.03.038
See this article

State-dependent asset allocation using neural networks

Reza Bradrania and Davood Pirayesh Neghab
The European Journal of Finance 1 (2021)
DOI: 10.1080/1351847X.2021.1960404
See this article

A non-iterative method for pruning hidden neurons in neural networks with random weights

Pablo A. Henríquez and Gonzalo A. Ruz
Applied Soft Computing 70 1109 (2018)
DOI: 10.1016/j.asoc.2018.03.013
See this article

Identifying the relative importance of predictive variables in artificial neural networks based on data produced through a discrete event simulation of a manufacturing environment

R. Pires dos Santos, D. L. Dean, J. M. Weaver and Y. Hovanski
International Journal of Modelling and Simulation 39 (4) 234 (2019)
DOI: 10.1080/02286203.2018.1558736
See this article

Detection of potential fishing zones for neon flying squid based on remote-sensing data in the Northwest Pacific Ocean using an artificial neural network

Jintao Wang, Wei Yu, Xinjun Chen, Lin Lei and Yong Chen
International Journal of Remote Sensing 36 (13) 3317 (2015)
DOI: 10.1080/01431161.2015.1042121
See this article

Predicting presence and absence of trout (Salmo trutta) in Iran

Hossein Mostafavi, Florian Pletterbauer, Brian W. Coad, et al.
Limnologica 46 1 (2014)
DOI: 10.1016/j.limno.2013.12.001
See this article

Modelling roach (Rutilus rutilus) microhabitat using linear and nonlinear techniques

Sebastien Brosse and Sovan Lek
Freshwater Biology 44 (3) 441 (2000)
DOI: 10.1046/j.1365-2427.2000.00580.x
See this article

Spatial organisation of European eel (Anguilla anguilla L.) in a small catchment

P Laffaille, E Feunteun, A Baisez, et al.
Ecology of Freshwater Fish 12 (4) 254 (2003)
DOI: 10.1046/j.1600-0633.2003.00021.x
See this article

Interpretation of Quantitative Structure–Activity Relationship Models: Past, Present, and Future

Pavel Polishchuk
Journal of Chemical Information and Modeling 57 (11) 2618 (2017)
DOI: 10.1021/acs.jcim.7b00274
See this article

Analysis of macrobenthic communities in Flanders, Belgium, using a stepwise input variable selection procedure with artificial neural networks

Wim Gabriels, Peter L. M. Goethals, Andy P. Dedecker, Sovan Lek and Niels De Pauw
Aquatic Ecology 41 (3) 427 (2007)
DOI: 10.1007/s10452-007-9081-7
See this article

Applications of artificial neural networks predicting macroinvertebrates in freshwaters

Peter L. M. Goethals, Andy P. Dedecker, Wim Gabriels, Sovan Lek and Niels De Pauw
Aquatic Ecology 41 (3) 491 (2007)
DOI: 10.1007/s10452-007-9093-3
See this article

An ecologically constrained procedure for sensitivity analysis of Artificial Neural Networks and other empirical models

Simone Franceschini, Lorenzo Tancioni, Massimo Lorenzoni, et al.
PLOS ONE 14 (1) e0211445 (2019)
DOI: 10.1371/journal.pone.0211445
See this article

Ecological Informatics

M. Gevrey, S. Lek and T. Oberdorff
Ecological Informatics 293 (2006)
DOI: 10.1007/3-540-28426-5_14
See this article

Selecting Variables for Habitat Suitability of Asellus (Crustacea, Isopoda) by Applying Input Variable Contribution Methods to Artificial Neural Network Models

Ans M. Mouton, Andy P. Dedecker, Sovan Lek and Peter L. M. Goethals
Environmental Modeling & Assessment 15 (1) 65 (2010)
DOI: 10.1007/s10666-009-9192-8
See this article

Environmental factors as indicators of dissolved oxygen concentration and zooplankton abundance: Deep learning versus traditional regression approach

Arnab Banerjee, Moitreyee Chakrabarty, Nabyendu Rakshit, Amiya Ranjan Bhowmick and Santanu Ray
Ecological Indicators 100 99 (2019)
DOI: 10.1016/j.ecolind.2018.09.051
See this article

Cascaded neural networks improving fish species prediction accuracy: the role of the biotic information

Simone Franceschini, Emanuele Gandola, Marco Martinoli, Lorenzo Tancioni and Michele Scardi
Scientific Reports 8 (1) (2018)
DOI: 10.1038/s41598-018-22761-4
See this article

Artificial Neuronal Networks

S. Lek, J. L. Giraudel and J. F. Guégan
Artificial Neuronal Networks 3 (2000)
DOI: 10.1007/978-3-642-57030-8_1
See this article

Environmental impact prediction using neural network modelling. An example in wildlife damage

François Spitz and Sovan Lek
Journal of Applied Ecology 36 (2) 317 (1999)
DOI: 10.1046/j.1365-2664.1999.00400.x
See this article

Assessing the Ecological Integrity of Running Waters

R. Wagner, T. Dapper and H.-H. Schmidt
Assessing the Ecological Integrity of Running Waters 143 (2000)
DOI: 10.1007/978-94-011-4164-2_11
See this article

Eel Biology

Eric Feunteun, Pascal Laffaille, Tony Robinet, et al.
Eel Biology 191 (2003)
DOI: 10.1007/978-4-431-65907-5_14
See this article

Anthropogenic and habitat correlates of hybridization between hatchery and wild brook trout

Andrew B. Harbicht, Mohammed Alshamlih, Chris C. Wilson, Dylan J. Fraser and Paloma Morán
Canadian Journal of Fisheries and Aquatic Sciences 71 (5) 688 (2014)
DOI: 10.1139/cjfas-2013-0460
See this article

Embedding ecological knowledge into artificial neural network training: A marine phytoplankton primary production model case study

F. Mattei and M. Scardi
Ecological Modelling 421 108985 (2020)
DOI: 10.1016/j.ecolmodel.2020.108985
See this article

Is the Atlantic surface temperature a good proxy for forecasting the recruitment of European eel in the Guadalquivir estuary?

Juan Carlos Gutiérrez-Estrada and Inmaculada Pulido-Calvo
Progress in Oceanography 130 112 (2015)
DOI: 10.1016/j.pocean.2014.10.007
See this article

Advanced Metaheuristic Methods in Big Data Retrieval and Analytics

Mohamed Elhadi Rahmani and Abdelmalek Amine
Advances in Computational Intelligence and Robotics, Advanced Metaheuristic Methods in Big Data Retrieval and Analytics 27 (2019)
DOI: 10.4018/978-1-5225-7338-8.ch002
See this article

Updating the neural network sediment load models using different sensitivity analysis methods: a regional application

Abbas Abbaszadeh Shahri, Mojtaba Saneie, Seyed Abbas Hosseini and Reza Asheghi
Journal of Hydroinformatics 22 (3) 562 (2020)
DOI: 10.2166/hydro.2020.098
See this article

A depth-resolved artificial neural network model of marine phytoplankton primary production

F. Mattei, S. Franceschini and M. Scardi
Ecological Modelling 382 51 (2018)
DOI: 10.1016/j.ecolmodel.2018.05.003
See this article

Deep data analysis for aspiration pressure estimation in a high-pressure gas atomization process using an artificial neural network

Rashed Kaiser, Songkil Kim and Donggeun Lee
Chemical Engineering and Processing - Process Intensification 153 107924 (2020)
DOI: 10.1016/j.cep.2020.107924
See this article

Can machine learning extract the mechanisms controlling phytoplankton growth from large-scale observations? – A proof-of-concept study

Christopher Holder and Anand Gnanadesikan
Biogeosciences 18 (6) 1941 (2021)
DOI: 10.5194/bg-18-1941-2021
See this article

Chunanbo Guo, Young-Seuk Park, Yang Liu and Sovan Lek
27 11 (2015)
DOI: 10.1016/B978-0-444-63536-5.00002-8
See this article

Y.-S. Park and S. Lek
28 123 (2016)
DOI: 10.1016/B978-0-444-63623-2.00007-4
See this article

Michele Scardi
67 505 (2003)
DOI: 10.1016/S0422-9894(03)80136-8
See this article

Hossein Mostafavi, Ahmad Reza Mehrabian, Azad Teimori, Hossein Shafizade-Moghadam and Jafar Kambouzia
1143 (2021)
DOI: 10.1007/978-3-030-57570-0_52
See this article

Tony Bazzi and Mohamed Zohdy
25 (2018)
DOI: 10.1109/MEPCON.2018.8635295
See this article

Suneetha Uppu and Aneesh Krishna
104 (2018)
DOI: 10.1109/BIBE.2018.00027
See this article