Thematic Section: Physiology in Marine Molluscs
Free access
Issue
Aquat. Living Resour.
Volume 26, Number 3, July-September 2013
Thematic Section: Physiology in Marine Molluscs
Page(s) 257 - 261
DOI http://dx.doi.org/10.1051/alr/2013054
Published online 04 July 2013
  • Abele E., Philip E., Gonzalez P.M., Puntarulo S., 2007, Marine invertebrate mitochondria and oxidative stress. Front. Biosci. 12, 933–946. [CrossRef] [PubMed]
  • Bickler P.E., Buck L.T., 2007, Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu. Rev. Physiol. 69, 145–170. [CrossRef] [PubMed]
  • Boyd J.N., Burnett L.E., 1999, Reactive oxygen intermediate production by oyster hemocytes exposed to hypoxia. J. Exp. Biol. 202, 3135–3143. [PubMed]
  • Donaghy L., Kraffe E., Le Goïc N., Lambert C., Volety A.K., Soudant P., 2012, Reactive oxygen species in unstimulated hemocytes of the Pacific oyster Crassostrea gigas: a mitochondrial involvement. PLoS One 7, e46594. [CrossRef] [PubMed]
  • Donaghy L., Lambert C., Choi K.-S., Soudant P., 2009, Hemocytes of the carpet shell clam (Ruditapes decussatus) and the Manila clam (Ruditapes philippinarum): current knowledge and future prospects. Aquaculture 297, 10–24. [CrossRef]
  • Genova M.L., Lenaz G., 2013, A critical appraisal of the role of respiratory supercomplexes in mitochondria. Biol. Chem. 394, 631–639. [CrossRef] [PubMed]
  • Hégaret H., Wikfors G., Soudant P., 2003, Flow cytometric analysis of haemocytes from eastern oysters, Crassostrea virginica, subjected to a sudden temperature elevation II. Haemocyte functions: aggregation, viability, phagocytosis, and respiratory burst. J. Exp. Mar. Biol. Ecol. 293, 249–265. [CrossRef]
  • Mosca F., Narcisi V., Calzetta A., Gioia L., Finoia M.G., Latini M., Tiscar P.G., 2013, Effects of high temperature and exposure to air on mussel (Mytilus galloprovincialis Lmk 1891) hemocyte phagocytosis: modulation of spreading and oxidative response. Tissue Cell 45, 198–203. [CrossRef] [PubMed]
  • Ramírez-Aguilar S.J., Keuthe M., Rocha M., Fedyaev V.V., Kramp K., Gupta K.J., Rasmusson A.G., Schulze W.X., van Dongen J.T., 2011, The composition of plant mitochondrial supercomplexes changes with oxygen availability. J. Biol. Chem. 286, 43045–43053. [CrossRef] [PubMed]
  • Solaini G., Baracca A., Lenaz G., Sgarbi G., 2010, Hypoxia and mitochondrial oxidative metabolism. Biochim. Biophys. Acta Bioenerg. 1797, 1171–1177. [CrossRef]
  • Sussarellu R., Fabioux C., Camacho Sanchez M., Le Goïc N., Lambert C., Soudant P., Moraga D., 2012, Molecular and cellular response to short-term oxygen variations in the Pacific oyster Crassostrea gigas. J. Exp. Mar. Biol. Ecol. 412, 87–95. [CrossRef]
  • Sussarellu R., Dudognon T., Fabioux C., Soudant P., Moraga D., Kraffe E., 2013, Rapid mitochondrial adjustments in response to short-term hypoxia and re-oxygenation in the Pacific oyster Crassostrea gigas. J. Exp. Biol. 216, 1561–1569. [CrossRef] [PubMed]
  • Tielens A.G.M., Rotte C., van Hellemond J.J., Martin W., 2002, Mitochondria as we don’t know them. Trends Biochem. Sci. 27, 564–572. [CrossRef] [PubMed]
  • Turrens J.F., 2003, Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335–344. [CrossRef] [PubMed]
  • Xu M., Wang Y., Ayub A., Ashraf M., 2001, Mitochondrial K-ATP channel activation reduces anoxic injury by restoring mitochondrial membrane potential. Am. J. Physiol. Heart Circ. Physiol. 281, H1295–H1303. [PubMed]