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Abstract — A real-time polymerase chain reaction (PCR) assay was developed for the identification and quantification
of two oyster species: Ostrea edulis and Crassostrea gigas. Two sets of primers and TagMan-MGB probes were de-
signed, based on partial sequences of the 16S rRNA gene. An amplification positive control system was also located in
the 18S rRNA gene sequences. Closely related species of oysters and other bivalves, known to co-occur with the target
species in European waters, were used to test the assay for cross-reactivity. The assay designed was specific for the
target species and no signal or no significant signal was detected for all non-target species tested. The high sensitivity
of this method was demonstrated since it is possible to detect just one larva (150-200 um size) of each species even
when it is present with others. Furthermore, this assay provided an acceptable quantification of the number of spiked
larvae (1, 10 and 100 larvae) in plankton samples employing a standard curve for larvae.
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1 Introduction

The northwest of Spain (Galicia) is one of the regions in
the world where the cultivation of bivalves has gained sig-
nificant importance, due to its suitable environmental and ge-
ographical conditions which provide high yields in this area
(Figueiras et al. 2002). The flat oyster, Ostrea edulis Linnaeus
1758, is an autochthonous species in this area. Nowadays,
natural production of this species is almost symbolic due to
its high susceptibility to Bonamia parasitosis (Iglesias et al.
2005). The high mortality rates of O. edulis led to the con-
sequent introduction of the Pacific oyster, Crassostrea gigas
(Thunberg 1793), mainly from France (Iglesias et al. 2005;
Mirella da Silva et al. 2005), which is now the main oyster
cultivated in Galicia. This signifies that in the same area it is
possible that both species co-occur.

Identification of plankton larvae, particularly bivalves
species, is a difficult task, mainly due to their small size
(<500 pm) and the great morphological similarity among
the different species in the early stages of the biological cy-
cle (Garland and Zimmer 2002). The ability to differentiate
between bivalve species in their early larval phases allows for a
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more comprehensive knowledge of larval dispersal pathways,
population connectivity and gene flow. Such knowledge would
provide the information needed for proper fisheries and man-
agement of wild and cultured marine resources in regions like
Galicia, or countries where production of bivalve molluscs is
an important economic resource.

Classical methodology for identifying bivalve larvae re-
lies on observation of morphological characters by optical mi-
croscopy. Such methodology is typically time consuming and
often requires taxonomic expertise as larval phases of bivalves
often do not show clear morphological differences. Therefore,
due to time constraints, the number of samples which can be
analyzed by this procedure are generally low and this hampers
monitoring works or studies which require high sampling.

Immunological techniques currently offer a method for
identifying plankton larvae. Some authors have successfully
applied polyclonal antibodies for larval identification in plank-
ton samples (Paugam et al. 2000; Paugam et al. 2003) but
cross-reactions with non-target species. The use of mono-
clonal antibodies is an alternative method which has been
successfully applied in the identification of mussel species
(Lorenzo-Abalde et al. 2005; Pérez et al. 2009).

There are other recent methods of species identification
based on fluorescent in situ hybridization with DNA probes,
FISH-CS (Le Goff-Vitry et al. 2007; Henzler et al. 2010) and
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image analysis (Thompson et al. 2012; Goodwin et al. 2014).
In situ hybridization has been effective in zooplankton larvae
identification but some aspects, such as autofluorescence, need
improvement since they could compromise the effectiveness
of labeling techniques by yielding false positives. Although
image analysis methods like ShellBi attain high accuracy in
the identification of larvae reared in the hatchery, the effect of
different growth conditions (temperature and salinity) on shell
formation between larvae reared in the hatchery and in the field
cause a significant decrease in accuracy (30% if larvae are not
grown in similar conditions to those used in the larvae classifi-
cation). Therefore, improvements in image analysis are needed
for application to field samples.

Real-time PCR technique (RT-PCR) has emerged as a pow-
erful and rapid tool for species identification. A number of
other nucleic acid amplification methods have also been de-
veloped, including: species-specific oligonucleotide probes for
shellfish larvae identification (Bell and Grassle 1998); RFLP
analysis (Toro 1998; Hosoi et al. 2004; Wang et al. 2006);
RAPDs (André et al. 1999); multiplexed species-specific PCR
(Hare et al. 2000; Bendezu et al. 2005) and nested PCR (Patil
et al. 2005). However, none of these has so far been imple-
mented to the same extent as RT-PCR due to its highly sensi-
tive and rapid quantitative detection ability.

Inreal time PCR technique fluorescence dyes or probes are
introduced into the reaction allowing the PCR product formed
during the amplification process to be visualized by monitor-
ing the fluorescence signal emitted. There are two types of
RT-PCR analysis depending on the fluorescence source. The
simplest type involves the use of intercalating dyes such as
SYBR Green. These molecules bind to double-strand DNA,
producing an increase in fluorescence which correlates with
the amount of dsDNA present. The major drawback is that
any double stranded product, including unspecific products or
primer-dimers, will be detected and false positives can thus
occur. The second type is a more specific method for detect-
ing the accumulation of an amplicon because this involves
the use of fluorescent probes that are designed to be comple-
mentary to a target sequence within the amplicon. There are
several types of probes, such as molecular beacons, scorpi-
ons and TagMan probes (hydrolysis probes). The most com-
monly used, TagMan probes, are labelled with reporter and
quencher fluorophores in the 5’ and 3’ ends, respectively. Re-
porter fluorescence is reduced by the quencher as long as the
probe is intact, regardless of whether it is attached to its tar-
get. When Taq polymerase with a 5" nuclease activity begins
to add nucleotides and hydrolyzes the probe attached to the
template DNA, the quencher is separated from the reporter,
thereby enabling the emission of fluorescence which is then
registered and analyzed by the real time PCR software. The
most common method used to analyse the experimental data is
the Threshold Cycle Method whereby a fluorescence threshold
value, within the exponential phase of the amplification curve,
is selected. The PCR cycle at which the sample curve exceeds
this fluorescence threshold is the Ct value. This data is used to
compare all samples.

Real-time PCR has been successfully used for identify-
ing and quantifying phytoplankton species (Hosoi-Tanabe and
Sako 2005), shellfish (Dias et al. 2008) and other marine

invertebrate larvae (Vadopalas et al. 2006; Pan et al. 2008;
Wight et al. 2009; Smith et al. 2012). Furthermore, in a pre-
vious study (Quinteiro et al. 2011), a real-time PCR assay was
used for the identification and quantification of Manila clam
larvae (Ruditapes philippinarum) and successful results were
obtained in terms of specificity and sensitivity. Taking into
account this background work, the development of a reliable
real-time PCR assay for efficient and specific identification and
quantification of O. edulis and C. gigas larvae in plankton sam-
ples is proposed.

2 Materials and methods
2.1 Samples collection

Adult samples of C. gigas, C. angulata and O. edulis were
collected from several locations as show in Table 1. Further
specimens belonging to other adult bivalve species, 99 speci-
mens from 41 species, were obtained from local markets, col-
lected from several locations on the Galicia coast and donated
by other research institutions and universities (Table 1).

Plankton samples were collected by CETMAR (Techno-
logical Centre of the Sea, Vigo, Spain) from different loca-
tions along the northwest coast of Spain in 2009 and 2010.
Sampling was done using double oblique tows equipped with
a 40-um mesh at a depth of 10 m. The samples (400-500 L)
were filtered again through 40-um mesh upon return to the lab-
oratory and any retained material was suspended in 20 ml of
sterile seawater. Bivalve larvae were isolated using sugar gra-
dient centrifugation (Pérez et al. 2009), suspended in seawater
and stored at —20 °C.

C. gigas and O. edulis larvae (150-200 um size) were
obtained from single-species experimental cultures at the
CIMA-Corén (Center for Marine Research). These larvae were
counted under binocular lenses (NIKON SMZ-2T) and trans-
ferred by pipette to 1.5-ml microfuge tubes with 20 ul of
ethanol (33%). Standard samples containing larvae from 1
to 128 (1, 2, 4, 8, 16, 32, 64 and 128) of each species were
used to generate standard quantification curves. Three samples
consisting of 1, 10 and 100 cultured larvae of C. gigas and
O. edulis were further isolated and used to spike the CETMAR
plankton samples that contained around 250 larvae of other bi-
valve species, mostly Mytilus galloprovincialis.

2.2 DNA extraction

DNA from most adult bivalve samples (with the exception
of C. gigas) was extracted from 0.2 g of adductor muscle, man-
tle or foot tissues after overnight digestion in a thermo shaker
at 56 °C with 860 ul of lysis buffer (1% SDS, 150 mM NaCl,
2 mM EDTA, 10 mM Tris-HCI pH 8), 100 ul of 5 M guani-
dium thiocyanate and 40 ul of proteinase K (>20 Unit mg™").
After 3 h of digestion, extra proteinase K (40 ul) was added
to the solution and it was left overnight. DNA was then iso-
lated using the Wizard DNA Clean-Up System kit (Promega)
following manufacturer’s instructions. Crassostrea gigas adult
samples were processed with the EZNA Mollusk kit (OMEGA
bio-tek). A piece of 0.2 g of adductor muscle was digested
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Table 1. Tissue samples from bivalve species used for the study. IFREMER, France. XG: Conselleria do Mar, Xunta de Galicia (Spain).

Species Key N Source
Order Mytiloida
Mytilus edulis MEDU 2
Mytilus galloprovincialis MGAL 1 This work
Xenostrobus securis XSEC 1
Order Ostreoida
Crassostrea angulata CANG 10 This work
Crassostrea gasar CGAS 1 IFREMER
Crassostrea gigas CGIG 19 This work
. Applied Marine Biology Lab, South China
Crassostrea hongkongensis CHON 1 Sé)zflnstitute of Oceaniilogy (China)
Crassostrea sikamea CSIK | Tohoku National Fisheries Research Institute
(Japan)
Crassostrea virginica CVIR 1 University of Georgia (USA)
Ostrea angasi OANG 1 IFREMER
Ostrea chilensis OCHI 1 Southern University of Chile
Ostrea conchaphila OCON 1 IFREMER
Ostrea edulis OEDU 31 This work
Ostrea lurida OLUR 1 Oregon State University (USA)
Ostrea stentina OSTE 1 IFREMER
Order Pectinoieda
Aequipecten opercularis AOPE 1 This work
Chlamys varia CVAR 1 XG
Limaria hians LHIA 1 This work
Pecten maximus PMAX 1 XG
Order Veneroida
Acanthocardia echinata AECH 1 This work
Callista chione CCHI 1 This work
Cerastoderma edule CEDU 1 XG
Clausinela fasciata CFAS 1 This work
Dreissena polymorpha DPOL 1
Donax trunculus DTRU 1
Ensis ensis EENS 1
Ensis silicua ESIL 1
Gari depressa GDEP 1 XG
Glycimeris pilosa GPIL 1
Laevicardium crassum LCRA 1
Ruditapes decussatus RDEC 1
Ruditapes philippinarum RPHI 1
Scrobicularia plana SPLA 1
Solen marginatus SMAR 1 This work
Spisula solida SSOL 1
Venerupis pullastra VPUL 1 XG
Venerupis rhomboideus VRHO 1 XG
Venerupis aurea VAUR 1
Venus casina VCAS 1 This work
Venus gallina VGAL 1
Venus verrucosa VVER 1

in 350 pl of MLI buffer supplied with the Kit and 40 ul of
proteinase K (=20 Unit mg™'). After 3 h of digestion, another
40 ul of proteinase K was added and it was left overnight. DNA
was then isolated following manufacturer’s instructions.

DNA extracts from adult samples were quantified by UV-
spectrometry at 260 nm and by Quant-iT PicoGreen ds-
DNA Assay Kit (Invitrogen) for dsDNA quantification with
a VersaFluor Fluorometer (Bio-Rad). DNA concentration
was adjusted to 25 ng ul~!' for use in subsequent real-time
PCR reactions.

Samples of cultured C. gigas and O. edulis larvae were
washed in sterile Milli-Q water for 20 min at room tem-
perature to eliminate the ethanol, then the larvae were iso-
lated by removing the supernatant liquid after centrifugation at
10000 g, 1 min. DNA extraction from larvae was carried out
using EZNA Mollusc kit (OMEGA bio-tek) following man-
ufacturer’s instructions. Finally, DNA was eluted in 50 ul of
elution buffer.

The quality of DNA extracts, from adult and cultured sam-
ples, was evaluated by the UV ratio 260 nm/280 nm, obtaining
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values between 1.8 and 2 for adult samples and between 1.4
and 1.9 for cultivated larvae.

2.3 DNA amplification and sequencing

The universal primers 16Sa: 5’CGCCTGTTTAACAAA-
AACAT3" and 16Sb: 5’ ACGTGATCTGAGTTCAGACCGG3’
(Palumbi et al. 1991) were used to amplify a fragment of ap-
proximately 490 bp of the mitochondrial 16S rRNA gene for
the C. gigas, C. angulata and O. edulis species and another
18 bivalve species (Table 2). PCR was performed on a final
volume of 25 ul using PuReTaq™ Ready-To-Go™ PCR beads
(GE Healthcare), 2.4 uM of each primer, water and DNA. Am-
plification conditions consisted of an incubation step of 94 °C
for 3 min, followed by 35 cycles of 94 °C for 40 s, 50 °C
for 40 s, 72 °C for 40 s and a final extension step of 72 °C
for 7 min.

PCR products were treated with 3 ul ExoSAP-IT (Ammer-
sham Biosciences) for deactivating dNTPs and hydrolysing
single strand DNA in a two step incubation, first at 37 °C
for 30 min and then at 80 °C for another 15 min. Se-
quencing reactions were prepared with the ExoSAP-IT treated
PCR products and Big Dye (Applied Biosystems) following
manufacturer’s instructions. Sequencing reactions consisted of
an incubation step of 3 min at 94 °C, followed by 25 cycles
of 10 s at 96 °C, 5 s at 50 °C and 4 min at 72 °C. Products
were purified using a standard ethanol precipitation, and the
pellet obtained stored at —20 °C. Sequencing was carried out
in an ABI PRISM 310 DNA Sequencer (Applied Biosystems).
The resulting sequences were analysed using BIOEDIT (Hall
1999) software and then aligned with other sequences avail-
able from Genbank (Table 2) using CLUSTAL (Thompson
et al. 1997) software.

2.4 Probe and primers design

Two sets of primers and TagMan-MGB probes were de-
signed for C. gigas and O. edulis based on the alignment of
16S rRNA gene sequences from 33 bivalve species (Table 2)
using Primer Express (version 2.0) software (Applied Biosys-
tems) and following the standard parameters. The specificity
of primers and probes were evaluated via BLAST (Johnson
et al. 2008). A positive control system for bivalve taxa was
also designed in the 18S rRINA gene sequences from the Gen-
bank (Table 2) to discard possible false negatives for non-
target species with the oyster specific systems. The 5’ end of
the CGIG/ANG16S_P, OEDU16S_P and BIV18S_P probes
were labelled with the fluorescent reporter dyes VIC, FAM
and NED respectively.

2.5 Real-time PCR conditions

All real-time PCR reactions were performed in a total vol-
ume of 20 ul consisting of 10 ul of TagMan Fast Universal
PCR Master Mix no UNG Amperase (2X), 1 ul of each primer
and probe with a final concentration as described in Table 3,
water and 2 ul of DNA (25 ng ul™!) for inclusivity (target
species) and exclusivity (non-target species) assays; for lar-
vae quantification assays 2 ul of DNA from each extract sam-
ple were added. Reactions were conducted in triplicate on an

ABI 7500 Fast (Applied Biosystems) real-time PCR machine
at 95 °C for 10 min followed by 40 cycles of 95 °C for 15 s
and 60 °C for 1 min. In all real-time PCR assays three non
target control (NTC) wells were included to discard false pos-
itives due to contamination. The average Ct value, calculated
for each target species, C. gigas, C. angulata and O. edulis
(inclusivity assay) was compared with that of all non-target
species (exclusivity assay), using a normal distribution z-test
with different variances (Yuan et al. 2006). The confidence in-
terval (@« = 0.05) was calculated for the average Ct value of
target and non target species.

3 Results

3.1 DNA sequencing and Real time PCR system
design

The mitochondrial 16S rRNA region, flanked by the 16Sa
and 16Sb primers, was successfully amplified and sequenced
for several bivalve species (Table 2). All data obtained in the
present work, together with sequences available on GenBank,
were used for the design of a specific real time PCR system for
C. gigas and O. edulis species.

The alignment of 16S rRNA sequences of the bivalve
species listed in Table 2 point to the existence of many inter-
specific nucleotide differences between the group composed
of the O. edulis, C. gigas and C. angulata sequences and the
rest of bivalves sequences used in the alignment (Table 4 and
Table S1, online-only material). No inter-specific nucleotide
differences were found between the C. gigas and C. angu-
lata sequences in this region. The absence of inter-specific
variability in these two latter species confirms observations
from previous studies about the close phylogenetic relation-
ship that exists between these two taxa (Boudry et al. 2003;
Reece et al. 2008). Consequently, one system was designed
for Ostrea edulis and another for the closely related C. gigas
and C. angulata. The high inter-specific variability between
O. edulis and C. gigas/C. angulata sequences with all other bi-
valve sequences permits the location of potential target sites
for designing a real-time PCR system for both groups. Only
a few of such potential sites were selected, specifically those
that permitted location of specific real-time PCR systems with
an adequate score for design parameters (primers and probes
melting temperature, GC content, amplicon length, nucleotide
composition and secondary structure) included in the Primer
Express software. The alignment of the 18S rRNA sequences
are used for the design of the positive control system for bi-
valve taxa (Table S2). No intra-specific variability affecting
specificity was detected in any of the systems; this allows iden-
tifications without the incidence of false negative results. The
sequences of the primers and probes of each of the systems
developed are shown (Table 3).

3.2 Real-time PCR setup
The optimal concentration of primers and probes was de-

termined experimentally for each system by taking into ac-
count combinations of primers and probe that produced the



A. Séanchez et al.: Aquat. Living Resour. 27, 135-145 (2014) 139

Table 2. Sequences used to design the BIV_18S, CGIG/ANG_16S and OEDU_16S systems. GenBank accession numbers in bold letters
correspond to sequences obtained during this work. V: Veneroida, P: Pectinoida, O: Ostreoida, M: Mytiloida.

Species Order Key Accession number Accession number
18S rRNA sequences 16S rRNA sequences

Acanthocardia echinata Veneroida AECH JF808174

Acanthocardia tuberculata v ATUB AM774522

Aequipecten opercularis Pectinoida AOPE JF808175

Anomia ephippium P AEPH AF120535

Callista chione v CCHI AJ007613 AJ548772

Cardites antiquata v CAUT AF120550

Cerastoderma edule A\ CEDU AM774520 JF808177

Chamelea striatula \% CSTR DQ279943

Chlamys hastata P CHAS 149049

Chlamys islandica P CISL L11232

Chlamys varia P CVAR AJ586481

Clausinela fasciata v CFAS JF808178

Crassostrea angulata Ostreoida CANG JF808176

Crassostrea gasar (0] CGAS JF808179

Crassostrea gigas o CGIG AB064942 JF808180

Crassostrea hongkongensis (¢} CHON JF808181

Crassostrea sikamea (¢} CSIK JF808182

Crassostrea virginica (0] CVIR X60315 JF808183

Donax trunculus A\ DTRU EF417553

Dosinia corrugata v DCOR EF426290

Dosinia exoleta v DEXO JF808184

Ensis ensis v EENS AF120555 AJ548775

Ensis siliqua A\ ESIL AJ586470

Eucrassatella cumingii A\ ECUM AM774479

Gari elongata \" GELO AM774532

Glycymeris insubrica Arcoida GINS AF207647

Limaria hians Limoida LHIA JF808185

Lutraria lutraria A\ LLUT AM774553

Mytilus edulis Mytiloida MEDU AY527062 NC_006161

Mytilus galloprovincialis M MGAL L33451 NC_006886

Nucula sulcata Nuculoida NSUL DQ279937

Ostrea chilensis o OCHI JF808186

Ostrea edulis o OEDU L49052 JF808187

Ostrea lurida (¢} OLUR JF808188

Ostrea stentina o OSTE JF808179

Panopea abrupta Myoida PABR AM774514

Pecten maximus P PMAX L49053 EU379454

Pharus legumen v PLEG AM774510

Pholas dactylus Myoida PDAC AY070122

Ruditapes decussatus \" RDEC AJ294949/JF808190

Ruditapes philippinarum \" RPHI AM774568

Solen marginatus A\ SMAR AJ586473

Solen vaginoides A\ SVAG AM774507

Spisula solida \" SSOL L11266 JF808191

Venerupis aurea \" VAUR AJ294950

Venerupis pullastra A\ VPUL AJ417845

Venerupis rhomboideus A\ VRHO AJ417848

Venerupis saxatilis \" VSAX AM774571

Venus casina v VCAS JF808192

Venus gallina v VGAL JF808193

Venus verrucosa A\ VVER AJ007614 AJ294947
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Table 3. Primers and TagMan-MGB probe sequences.

. Primer and
_ _ Amplicon Probe
TagMan System Primer/Probe Primer Sequence 5" — 3’ length .
(bp) concentration
(nM)
CGIG/ANG16S_F GGGCGCCTAGAAAGCAAGT 300
CGIG/ANG 16S CGIG/ANG16S_R ATCGGGTCAAATCCGGAAAG 62 300
CGIG/ANG16S_P VIC-AACCTTTCTGAATAACTAAC-MGB 200
OEDU16S_F GGCGCCCCACCTAAAAAT 900
OEDU 168 OEDU16S_R AGACCCCGTGCAACTTTTAAAG 62 900
OEDU16S_P FAM- TGAAACTCCTAAACAAGTTG-MGB 225
BIV_18S_F AGCCACACGAGATTGAGCAAT 300
BIV_18S_P NED-ACAGGTCTGTGATGCC-MGB 200
lowest Ct value and the highest final fluorescence value. Such 21
concentrations were used to carry out all assays (Table 3). A
Real-time PCR efficiency was assessed through seven
(CGIG/ANG_16S and BIV_18S) and six (OEDU_16S) 10- g
fold DNA dilutions starting at 50 ng. Efficiency curves showed g1
a slope of —3.34, —-3.41 and -3.35 for CGIG/ANG_16S, £
OEDU_16S and BIV_18S, respectively. Efficiency of the sys- =
tems, calculated as E = [10C1/51°P) _ 1] x 100, was found B
to be 99%, 96%, 99% for CGIG/ANG_16S, OEDU_16S and Threshold
0

BIV_18S, respectively. Values very close to 100% efficiency
for which the DNA amount in each PCR cycle (n) is twice the
amount of the previous cycle (n — 1), supporting the correct
guidelines for real time PCR assays (Chemistry Guide, Ap-
plied Biosystems 2005).

3.3 Specificity

The CGIG/ANG_16S and OEDU_16S systems were
tested for specificity and cross-reactivity with the bivalve
species listed in Table 5. The CGIG/ANG_16S system, which
amplifies a 62 bp fragment of the mitochondrial 16S rRNA
gene, presents an average Ct value of 17.37 + 0.27 for all
C. angulata and C. gigas specimens used in the study, while
no amplification or no significant signal was obtained from
other bivalve species in the cross-reactivity analysis, including
O. edulis, as can be seen in Table 5 and Figure 1 (Ct average
of 39.49 + 0.36 from 42 non-C. gigas/C. angulata specimens).

Similar results were obtained for the OEDU_16S system,
for which the O. edulis samples gave an average Ct value of
17.79 £ 0.21 with no amplification or no significant signal ob-
tained for most bivalve species in the cross-reactivity analy-
sis, with the exception of O. angasi which presents a Ct value
similar to that of O. edulis. Some research articles, including
Jozefowicz and O Foighil (1998), Kenchington et al. (2002)
and Hurwood et al. (2005) consider these two taxa as the same
species. Following the suggestions in these papers, and based
on the identical sequence shown by the two species in the
16S rRNA alignment (Table S1), Ct of O. angasi will be not
included in the calculation of non target species Ct average
(37.90 = 2.59 for 43 non O. edulis).

The species used in the cross-reactivity test for the oyster
specific systems were also tested with the bivalve, BIV_18S

0 5 10 15 20 25 30 35 40
Cycle number

Fig. 1. Graphic representation of the cross-reaction assay to
Crassostrea gigas/C. angulata, CGIG/ANG_16S system. A: Ampli-
fication pattern for target species. B: Amplification pattern for non-
target species.

positive control system. They showed a positive amplification
in all cases (Table 5) with a Ct average of 16.16 + 0.97.

There is a statistically significant difference between the
Ct value obtained for target species and that for the rest of the
analyzed non target species (p < 0.001) for both systems.

3.4 Identification and quantification of oyster larvae

Standard quantification curves were established using
DNA isolated from cultured larvae in order to investigate the
potential of the CGIG/ANG_16S and OEDU_16S systems for
quantification. The standard quantification curves were ob-
tained for samples of 1 to 128 C. gigas and O. edulis larvae
(Fig. 2). Detection as low as one single larva was possible with
both systems. The potential for C. gigas and O. edulis larvae
quantification from plankton samples was also tested. In or-
der to do this, plankton samples were spiked with 1, 10 and
100 larvae of C. gigas and O. edulis. These were then homog-
enized and DNA extracted as described in the Materials and
Methods section. The number of spiked target larvae was de-
termined by extrapolation from each standard curve. Real and
estimated numbers of larvae are highly correlated (Fig. 3).
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Table 5. Results of cross-reaction assays for CGIG/ANG_16S, OEDU_16S and BIV_18S systems. Average Ct value + SD for three replicates.
Average Ct value + confidence interval (@ = 0.05) for oyster specific systems in bold letters. Ct value of 40 means no amplification.

Species Sample CGIG/ANG_16S OEDU_16S BIV_18S
Crassostrea angulata CANG 1 33.45 +£0.24 14.85 £ 0.11
Crassostrea angulata CANG 2 31.40 £ 0.38

Crassostrea angulata CANG 3 29.23 £ 0.01

Crassostrea gigas CGIG 1 17.37 £ 0.27 39.77 + 0.40 14.34 +0.03
Crassostrea gigas CGIG 2 40

Crassostrea gigas CGIG3 36.63 +0.82

Crassostrea hongkongensis CHON 40 40 16.05 £ 0.13
Crassostrea sikamea CSIK 39.31 £0.43 40 14.50 £ 0.12
Crassostrea virginica CVIR 40 40 14.81 £ 0.03
Ostrea edulis OEDU 1 40 13.22 £ 0.03
Ostrea edulis OEDU 2 36.45 = 1.37 17.79 + 0.21

Ostrea edulis OEDU 3 40

Ostrea chilensis OCHI 40 40 13.99 +0.09
Ostrea stentina OSTE 40 40 15.05 £ 0.08
Ostrea angasi OANG 40 18.86 £ 0.18 15.70 £ 0.03
Crassostrea gasar CGAS 40 37.26 + 0.66 14.12 £ 0.04
Ostrea conchaphila OCON 40 40 14.57 £ 0.04
Mytilus edulis MEDU 36.47 +1.03 35.27 £1.08 13.66 + 0.08
Mpytilus galloprovincialis MGAL 36.45 + 0.86 35.64 + 0.62 13.83 £ 0.04
Xenostrobus securis XSEC 40 37.23 £ 0.63 14.73 £0.13
Acanthocardia echinata AECH 40 39.59 £ 0.71 24.52 £0.14
Aegquipecten opercularis AOPE 38.62 +0.73 38.16 + 1.92 14.53 £ 0.06
Chlamys varia CVAR 40 36.94 +0.76 13.71 £ 0.09
Limaria hians LHIA 40 40 16.61 +0.03
Pecten maximus PMAX 40 37.87 +1.18 14.06 = 0.09
Callista chione CCHI 40 39.86 + 0.24 16.55 +0.13
Cerastoderma edule CEDU 39.69 + 0.54 37.20 £ 1.21 25.79 +£0.13
Clausinela fasciata CFAS 40 40 14.09 + 0.03
Dreissena polymorpha DPOL 40 38.91 +1.38 15.03 £0.13
Dosinia exoleta DEXO 40 40 16.84 £ 0.24
Donas trunculus DTRU 39.88 +0.20 36.12 £ 0.83 18.52 £ 0.14
Ensis ensis EENS 40 40 15.59 £ 0.14
Ensis siliqua ESIL 40 33.63 £ 0.43 15.74 £ 0.11
Gari depressa GDEP 40 38.65 + 1.58 18.92 +£0.03
Glycymeris pilosa GPIL 39.76 £ 0.41 36.01 +1.62

Laevicardium crassum LCRA 39.51 £ 0.85 38.22 0.44 26.14 +£0.10
Ruditapes decussatus RDEC 39.68 + 0.56 40 15.21 £ 0.04
Ruditapes philippinarum RPHI 40 38.71 £2.23 16.02 + 0.04
Scrobicularia plana SPLA 40 39.54 +0.79 17.47 £0.10
Solen marginatus SMAR 40 37.45 +£0.43 15.41 £ 0.08
Spisula solida SSOL 40 40 18.58 + 0.05
Venerupis pullastra VPUL 40 38.14 + 1.62 14.78 £ 0.03
Venerupis rhomboideus VRHO 40 39.99 + 0.02 16.33 £ 0.04
Venerupis aurea VAUR 40 40 17.79 £0.32
Venus casina VCAS 36.43 +£0.29 33.87 £0.18 14.43 +0.03
Venus gallina VGAL 40 40 15.81 £ 0.04
Venus verrucosa VVER 39.80 £ 0.34 37.71 £0.16 14.51 £0.13

4 Discussion

As mentioned above, mollusc larvae are difficult to identify
due to their small size and morphological similarity. Therefore,
alternative techniques for their identification through morpho-
logical characteristics are required. To this end, in recent years
alternative methods based on immunological and DNA tech-
niques, FISH-SC, and image analysis have been applied. Al-
though all of them, real time PCR included, have greatly

improved larvae identification and quantification, none has
been found to be entirely suitable.

Immunological techniques have been used to identify
plankton larvae (Perez et al. 2009). There are, however, a
number of disadvantages associated with such techniques, in-
cluding the need to produce monoclonal antibodies, maintain
hybridomas and the need for incubation steps, all of which
results in longer analysis times. Furthermore, to obtain quality
stained larvae, these have to be preserved in more restrictive
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Fig. 3. Correlation between the expected and quantified skyped larvae
in plankton samples.

conditions than those needed for DNA analysis. For example,
ethanol cannot be used in immuno-detection as it affects the
antigen and consequently the staining of the larvae (Perez et al.
2009).

Fluorescent in situ hybridization with DNA probes and im-
age analysis (Le Goff-Vitry et al. 2007; Goodwin et al. 2014)
have the drawbacks of autofluorescence and the effect of dif-
ferent growth conditions (temperature and salinity) on shell
formation, respectively.

In this study, we have proposed a specific TagMan real
time system for identifying and quantifying oyster larvae from
C. gigas and O. edulis species. The systems were designed
for the 16S rDNA region where intra-specific variability was
either absent or very low. The developed probe and primers
have been shown to be highly specific and able to differenti-
ate the species of interest from a large number of other bivalve
species. Moreover, both systems showed high sensitive: the de-
tection of only one larva in a plankton sample was possible.

The quantification method shown here is based on the
use of standards and same sized spiked larvae. One may
hypothesize that larval size may affect the number of
mtDNA molecules per larva, and therefore different larval
sizes may produce different responses to real time PCR. How-
ever, Vadopalas et al. (2006) have shown that pinto abalone lar-
val quantification was not affected by differences in larval size.
Further studies must nevertheless be conducted in order to ver-
ify whether there is any effect on quantification results across
the entire range of oyster larval sizes. If so, a new protocol that
separates larvae by size should be employed to circumvent this
problem.

In this work, we have demonstrated that real-time PCR fa-
cilitates identification and quantification of two of the most
important commercial oyster species. This is the first time that
this technique has been used for this purpose. The high cor-
relation observed between larvae number calculated by real-
time PCR assay and the real larvae number in spiked plankton
samples is truly outstanding. Although real-time PCR has been
shown to be a valid technique for the aims proposed in this
work, the size range of the quantified larvae cannot be pro-
vided. This disadvantage could be overcome by combining the
real-time PCR technique with other techniques such as image
analysis.

5 Conclusion

Molecular technologies like real-time PCR not only facili-
tate species identification but also reduce bivalve larvae analy-
sis time. The present study proposes a DNA method which is
rapid, one-step, time-saving and simpler than any other DNA
technique previously described, for identifying and quantify-
ing Crassostrea gigas and Ostrea edulis larvae. This method
can be a useful tool for monitoring spawning in certain areas,
even in areas where C. gigas and O. edulis are mixed with
closely related species, because of the high specificity and very
low cross-reaction of the proven TagMan systems. In addition,
the tool could be used in ecological studies such as those con-
cerning the influence of different parameters on larvae popula-
tion dynamics.
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Online-only materials

Table S1 Alignment of 16S rRNA partial sequences, showing
the position of the Ostrea edulis, OEDU_16S system.

Table S2. Alignment of 18S rRNA partial sequences from
GenBank, showing the position of bivalve, BIV_18S system.
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