Nutrition and growth in Clarias species – a review

Jan H. Van Weerd

Department of Fish Culture and Fisheries, Wageningen Agricultural University,
P.O. Box 338, 6700 AH Wageningen, The Netherlands.
Accepted January 23, 1995.

Abstract

The paper summarizes aspects of nutrition and growth in Clarias species. Of the many Clarias species cultured, Clarias gariepinus has been subject to particularly intensive research; the species has been widely introduced for aquaculture outside its natural range. Clarias are omnivorous fish. Their dietary protein requirements are about 40%, their energy requirements range between 13 and 17 kJ.g⁻¹. Controversy exists on their ability to utilize carbohydrates, despite the fact that their natural feed may contain high levels of carbohydrates. Comparison of growth performances as recorded in literature indicate that C. gariepinus seems to perform better in terms of growth rates and feed conversion than other species (C. isheriensis, C. batrachus, C. fuscus). Monosex culture (in C. gariepinus) or triploidy (in C. gariepinus and C. batrachus) do not seem to hold much future for improving growth and feed utilization, in contrast to hybridization. Selection for improved growth could have drawbacks, such as an increased level of aggression. To achieve improved growth, selection for lower maintenance requirements or better glucose metabolization seems preferable over selection for high feed utilization efficiencies.

Keywords: Catfish, Clarias, Clariidae, Siluriformes, nutrition, growth.

Nutrition et croissance de Clarias sp. – une synthèse.

Résumé

L’article résume les aspects nutritionnels et de croissance chez les poissons du genre Clarias. Des nombreuses espèces cultivées de Clarias, Clarias gariepinus est particulièrement l’objet de recherche intensive; l’espèce a été largement introduite à des fins d’aquaculture hors de son aire de répartition naturelle. Clarias est un poisson omnivore. La demande nutritionnelle en protéine est d’environ 40 % et celle en énergie est de 13 à 17 kJ.g⁻¹. Des controverses existent sur leur capacité à utiliser les sucres, en dépit du fait que leur alimentation naturelle contient des niveaux élevés en hydrates de carbone. Les comparaisons des performances de croissance, d’après une étude bibliographique, indiquent que C. gariepinus semble avoir de meilleures performances, en termes de taux de croissance et de taux de conversion alimentaire que les autres espèces (C. isheriensis, C. batrachus, C. fuscus). L’élevage de C. gariepinus en séparant mâles et femelles ou l’élevage d’individus triploïdes (chez C. gariepinus et C. batrachus) ne semblent pas ouvrir de larges perspectives pour améliorer la croissance et l’utilisation nutritionnelle, contrairement à l’élevage d’hybrides. La sélection pour améliorer la croissance pourrait provoquer des inconvénients telle que l’augmentation du niveau d’agressivité. Pour parfaire l’amélioration de la croissance, la sélection pour des demandes plus faibles de maintenance ou de meilleure métabolisation du glucose semble préférable à une sélection pour l’efficacité d’une forte utilisation nutritionnelle.

Mots-clés: Poisson-chat, Clarias sp., Clariidés, Siluriformes, nutrition, croissance.
INTRODUCTION

A variety of species of the genus *Clarias* and their hybrids is cultured, for reasons of their high growth rate, disease resistance and amenability to high density culture, related to their air-breathing habits (Huisman and Richter, 1987; Haylor, 1993). Of the species studied, *Clarias macrocephalus* (Areerat, 1986), *Clarias batrachus* (e.g. Zheng et al., 1988; Singh and Singh, 1992), *Clarias fuscus* (Zheng et al., 1988; Anderson and Fast, 1991) and *Clarias isheriensis* (e.g. Fagbenro and Sydenham, 1989), the African species *C. gariepinus* has been subject to particularly intensive research in notably S. Africa (e.g. Hecht et al., 1988) and the Netherlands (e.g. Huisman and Richter, 1987). *C. gariepinus* has been widely introduced for aquaculture outside its natural range (Verreth et al., 1993). Recent reports on the status of commercial culture of *Clarias* species are given for Thailand by Areerat (1987), for China by Zheng et al., 1988, and for the Netherlands by Verreth and Eding (1993). The present paper summarizes aspects of nutrition and growth in *Clarias* species. In view of the prospects for improved production characteristics of these species by genetic manipulation, genetic aspects of nutrition and growth are included.

NUTRITIONAL STUDIES

Natural feed

Ecological studies and studies in ponds (e.g. Bruton, 1979; Mbewaza-Ndwaula, 1984; Uys, 1989) have shown that juvenile *C. gariepinus* feed in decreasing order of preference, on insects and crustaceans, molluscs, detritus and plankton. *C. batrachus* shows similar preferences (Mookerjee and Mazumdar, 1950). Subadults and adults feed mainly on fish. *C. gariepinus* can vary its food according to availability (Clay, 1979) and the species is thus considered an opportunistic omnivore. Their omnivorous nature was confirmed by Uys (1989), who found *C. gariepinus* to possess proteases similar to carnivorous species, starch digestive capabilities similar to those of specialized herbivores and lysozyme and alkaline phosphatase as in detritivores. The species is physiologically equipped to cope with infrequent and irregular meals, as its digestive enzymes respond faster than those of cef (Anguilla anguilla) or carp (Cyprinus carpio), to feeding (Uys et al., 1987).

The natural or semi-natural food preferences and processing abilities are considered indicative of feed requirements and have been used as a basis for nutritional studies. It is plausible to assume that all *Clarias* species cultured to a large extent share the natural feeding habits described above for *C. gariepinus*.

Nutritional requirements

Commercial trout feeds have been used to study overall growth performance in *Clarias* species (e.g. Hogendoorn, 1981; Anderson and Fast, 1991). To elucidate dietary requirements for protein (% and energy (as gross energy GE, digestible energy DE or metabolizable energy ME; in kJ/g) specific diets have been used. In general, protein requirements seem to be in the order of over 40% for *C. gariepinus* and somewhat lower for *C. batrachus* and *C. isheriensis*. Energy levels range from 13 to 17 kJ GE/g, resulting in protein-energy (P/E) ratios of between 31 and 36 mg/kJ GE and somewhat lower for *C. batrachus* and *C. isheriensis* (table 1). Evaluation criteria in table 1 are growth rate, feed conversion efficiency and protein utilization, with one exception (digestive enzyme activities; Singh and Singh, 1992). Unfortunately, energy requirements are not uniformly expressed (GE, DE or ME), hampering objective comparison. Nevertheless, species differences regarding these requirements appear to exist. Moreover, optimum P/E ratios depend on temperature, as was found for *C. gariepinus* (Henken et al., 1986) (see below), and one P/E figure therefore does not necessarily suffice to describe requirements at a range of ambient temperatures.

![Table 1. - Dietary protein and energy requirements.](https://example.com/table1.png)

<table>
<thead>
<tr>
<th>Protein (%)</th>
<th>Energy (kJ/g)</th>
<th>P/E (mg/kJ)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>&gt;40</td>
<td>13 ME</td>
<td>31</td>
<td>Machiels and Henken (1985)</td>
</tr>
<tr>
<td>40-42</td>
<td>14-16 DE</td>
<td>26-29</td>
<td>Uys (1989)</td>
</tr>
<tr>
<td>40</td>
<td>11-13 GE</td>
<td>31-36</td>
<td>Degani et al. (1989)</td>
</tr>
<tr>
<td>40</td>
<td>16 GE</td>
<td>25</td>
<td>Khan and Jali (1990)</td>
</tr>
<tr>
<td>40</td>
<td>-</td>
<td>-</td>
<td>Singh and Singh (1992)</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>-</td>
<td>Chuafoe (1987)</td>
</tr>
<tr>
<td>37-40</td>
<td>13 ME</td>
<td>28-31</td>
<td>Fagbenro (1992a)</td>
</tr>
</tbody>
</table>

*GE = gross energy; DE = digestible energy; ME = metabolizable energy.

P/E = protein-energy ratio.

- = no data.

Fats or oils and carbohydrates are sources of non-protein energy. Uys (1989) varied fat percentages at a constant dietary protein level (42%) and arrived at an optimum fat percentage for *C. gariepinus* of 10-12%. In fact, most *Clarias* diets reported seem to have similar or slightly lower fat contents (e.g. *C. batrachus*, Patra and Ray, 1988; *C. gariepinus*, Heinsbroek et al., 1989, Degani et al., 1988, 1989; *C. isheriensis*, Fagbenro, 1992a).
Because of the limited possibilities, at least in C. gariepinus, to include high levels of fat (above 20%) due to the ensuing reduced feed intake (see below) or for reasons of local ingredient availability, carbohydrates are included in diets. Teleosts in general have a limited capacity to assimilate and metabolize carbohydrates (Cowey and Cho, 1993) and there is some controversy about the ability of Clarias species to utilize carbohydrates. The natural diet of especially juvenile Clarias may contain considerable amounts of carbohydrates (Uys, 1989) and studies on digestive enzyme activities point to a carbohydrate digesting capacity (see above). On the other hand, Bhatt (1980) found C. batrachus to possess a low glucose tolerance and Machiels and Van Dam (1987) mention that C. gariepinus has a low ability to metabolize glucose rapidly. Degani and Revach (1991) compared digestive capabilities of tilapia (Oreochromis aureus × O. niloticus), common carp (Cyprinus carpio) and C. gariepinus, and found the latter to have carbohydrate digestive capabilities lower than tilapia but higher than carp, whereas fat was digested better than by tilapia but less good than by carp. Despite the existing controversy, carbohydrate levels in Clarias diets are often substantial, and reportedly range from 15 to 35% in C. gariepinus (Balogun and Ologhobo, 1989; Heinsbroek et al., 1990; Fagbenro et al., 1993), from 20 to 66% in C. batrachus (Venkatesh et al., 1986, Patra and Ray, 1988; Hasan and Jafri, 1989, Singh and Singh, 1992) and from 17 to 48% in C. isheriensis (Fagbenro, 1992).

Feed ingredients

Clarias diets are usually made up of a variety of ingredients, to meet the compositional requirements discussed above. Table 2 mentions ingredients and their inclusion levels in what seem to be "standard" experimental diets for C. gariepinus, C. batrachus and C. isheriensis as encountered in literature. Vitamin and mineral additions have been omitted in this table, since they usually are added in the form of commercial premixes. Generally speaking, fish meal constitutes the main protein source (some 40-60%), relinquished only when a protein-rich alternative is included, mostly of vegetable origin (e.g. groundnut cake, soybean meal) (Chuapoehuk, 1987; Balogun and Ologhobo; Fagbenro, 1992).

GROWTH PERFORMANCE

Several studies have addressed the interplay of feeding level, body weight on temperature on growth performance of Clarias species. Bioenergetic studies in C. gariepinus revealed that the high ratio between metabolizable energy for production (MEP) and that for maintenance (MEm), and the high efficiency of conversion of MEp into retained energy, largely explain the highly efficient feed conversion of C. gariepinus (Hogendoorn, 1983). The ratio MEP/MEm varies with body weight and temperature, due to an interactive effect of feeding level and temperature on the weight exponents in the allometric relations of feed intake and metabolism with body weight. For example, in C. gariepinus MEP/MEm was calculated to be 2.8, 7.0 and 9.4 for 5 g fish and 3.7, 4.9 and 2.6 for 200 g fish, at 20, 25 and 30°C, respectively (Hogendoorn, 1983). In subsequent studies, MEP/MEm for C. gariepinus was calculated to range from 4 to 13, as compared to 2-4 in eel, 1-9 in rainbow trout (Oncorhynchus mykiss) and 5 in grass

Table 2. – Ingredients in Clarias diets.

<table>
<thead>
<tr>
<th>Animal origin</th>
<th>Vegetable origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM fish meal; BM blood meal; PM poultry meal; CM carcass meal; FO fish oil; G gelatin; AF animal fat; WF wheat flour; WS wheat starch; WB wheat bran; R rice (broken); RB rice bran; C corn (maize); CS corn starch; SM soybean meal; GC groundnut cake; BW brewery waste; M molasses powder; VO vegetable oil.</td>
<td></td>
</tr>
</tbody>
</table>

carp (*Ctenopharyngodon idella*). Hogendoorn (1983) calculated an efficiency of conversion of MEi into retained energy of 0.8 in *C. gariepinus*, as compared to 0.7 in carp and rainbow trout. This efficiency in *C. gariepinus* is independent of body weight, feeding level and temperature, and these factors therefore affect growth mainly through maintenance requirements and maximum feed intake or metabolism (Heinsbroek, 1987). Henken *et al.* (1986) showed that optimum P/E ratios are also affected by temperature (25 mg/kJ ME at 24°C and 34.7 mg/kJ ME at 29°C).

Other studies have confirmed the relationship between temperature and growth, in *C. gariepinus* (Degani *et al.*, 1989) and in *C. fuscus* (Anderson and Fast, 1991). Within the genus, species differences regarding optimum temperature for growth have been noted; Anderson and Fast (1991) state that juvenile *C. fuscus* have a lower temperature than *C. gariepinus*.

Machiels and Henken (1986) developed a dynamic simulation model to predict the relationship between feeding level and growth and metabolism of *C. gariepinus* of different weight classes at different temperatures and fed a commercial diet (see above), based upon nutrient intake, digestion, absorption, biochemical reactions in the intermediate metabolism and the ultimate deposition of body constituents. Body weight, body fat percentage, feed composition, feeding level and temperature were input values yielding growth, protein gain, fat gain and oxygen consumption as output values. The model adequately predicted the relationships mentioned above, and the authors concluded that *C. gariepinus* utilizes nutrients at maximum biochemical efficiency. In a subsequent study (Machiels and Henken, 1987), the effect of feed composition (protein, fat and carbohydrates) was incorporated. At high dietary fat levels (22% or more) fresh weight gain decreased, because of reduced intake, caused by a rapidly increasing body fat percentage. This had been observed earlier for *C. gariepinus* (Machiels and Henken, 1985) and led the authors to propose a feed intake regulation model based on body fat percentage. Machiels and Van Dam (1987) therefore proceeded to adapt the model to account for the effect of body composition, assuming maximum feed intake would be regulated by lipostatic and glucostatic mechanisms, the former at low dietary carbohydrate levels, the latter at high dietary carbohydrate levels. Using this model, fresh weight gain of *C. gariepinus* fed diets with different compositions, can be predicted.

Optimum recorded specific growth rate (SGR in % of body weight per day) and feed conversion (FC as g feed per g fish growth) have been compiled in table 3, for *C. gariepinus*, but also for *C. isheriensis*, *C. batrachus* and *C. fuscus* at optimum feeding levels. Since species differences regarding optimum temperature exist (see above), data in table 3 relate to optimum temperatures as stated by the authors. In figure 1 (relation between body weight and SGR and relation between body weight and FC), fitted curves for *C. gariepinus* data are given for comparison with ranges found in the other species (from table 3). In *C. gariepinus* SGR decreases from ca 12%/day in juveniles to less than 2%/day in adults (200-300 g). Although data from species other than *C. gariepinus* are limited, figure 1 indicates that *C. isheriensis*, *C. batrachus* and *C. fuscus* all perform less than *C. gariepinus* (fig. 1a). Similarly, in *C. gariepinus* FC increases from 0.7 in juveniles to ca. 1.5 in adults, and again *C. isheriensis*, *C. batrachus* and *C. fuscus* perform less (fig. 1b). At face value, these data support the popularity of *C. gariepinus* as compared to other species of the genus, for aquaculture (see above).

**GENETIC ASPECTS OF NUTRITION AND GROWTH**

Male *C. gariepinus* have been observed to grow faster than females (e.g. Christensen, 1981; Henken

**Table 3.** – Specific growth rate (SGR) and feed conversion (FC) at optimum feeding levels (FL) and temperatures (Temp.) for different size ranges of *Clarias* species.

<table>
<thead>
<tr>
<th>Size range (g)</th>
<th>SGR (%/day)</th>
<th>FC (g/g)</th>
<th>FL (%/day)</th>
<th>Temp. (°C)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Clarias gariepinus</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3-3</td>
<td>11</td>
<td>1.2</td>
<td>10</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>0.5-10</td>
<td>8.12</td>
<td>0.7-1.4</td>
<td>10</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>1.14</td>
<td>9.12</td>
<td>0.6-0.9</td>
<td>–</td>
<td>26-34</td>
<td>3</td>
</tr>
<tr>
<td>3.5-21.5</td>
<td>1.7</td>
<td>0.94</td>
<td>4</td>
<td>27</td>
<td>4</td>
</tr>
<tr>
<td>9-36</td>
<td>5.7</td>
<td>0.8-1.0</td>
<td>–</td>
<td>26-34</td>
<td>3</td>
</tr>
<tr>
<td>5-40</td>
<td>6</td>
<td>1.6</td>
<td>5</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>17-49</td>
<td>3.5</td>
<td>0.7-1.0</td>
<td>–</td>
<td>26-34</td>
<td>3</td>
</tr>
<tr>
<td>25-70</td>
<td>4</td>
<td>1.6</td>
<td>4</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>5-150</td>
<td>3.7</td>
<td>–</td>
<td>ad lib.</td>
<td>–</td>
<td>5</td>
</tr>
<tr>
<td>5-170</td>
<td>3.9</td>
<td>–</td>
<td>ad lib.</td>
<td>–</td>
<td>5</td>
</tr>
<tr>
<td>95-200</td>
<td>2</td>
<td>3.0</td>
<td>1.5</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>5-220</td>
<td>4.2</td>
<td>–</td>
<td>ad lib.</td>
<td>–</td>
<td>5</td>
</tr>
<tr>
<td>160-300</td>
<td>1.3-3.1</td>
<td>1.17-2.01</td>
<td>–</td>
<td>26-34</td>
<td>3</td>
</tr>
<tr>
<td>5-320</td>
<td>4.5</td>
<td>–</td>
<td>ad lib.</td>
<td>–</td>
<td>5</td>
</tr>
<tr>
<td>10-340</td>
<td>1.90</td>
<td>0.93</td>
<td>4</td>
<td>27</td>
<td>6</td>
</tr>
<tr>
<td><em>Clarias isheriensis</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-120</td>
<td>2.1-2.2</td>
<td>1.7</td>
<td>5</td>
<td>27</td>
<td>7</td>
</tr>
<tr>
<td>12-325</td>
<td>1.8</td>
<td>1.9</td>
<td>ad lib.</td>
<td>29</td>
<td>8</td>
</tr>
<tr>
<td><em>Clarias batrachus</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1-9</td>
<td>7.5</td>
<td>1.3</td>
<td>10</td>
<td>–</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>0.9</td>
<td>1.2</td>
<td>5</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>20-40</td>
<td>1.8</td>
<td>1.2</td>
<td>3</td>
<td>30</td>
<td>11</td>
</tr>
<tr>
<td>20-160</td>
<td>1.7</td>
<td>3.4</td>
<td>8</td>
<td>24-28</td>
<td>12</td>
</tr>
<tr>
<td><em>Clarias fuscus</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-60</td>
<td>2.5-4.9</td>
<td>1.2-1.8</td>
<td>2-6</td>
<td>25</td>
<td>13</td>
</tr>
<tr>
<td>60-160</td>
<td>0.6-0.8</td>
<td>2.4-6.8</td>
<td>2-6</td>
<td>25</td>
<td>13</td>
</tr>
<tr>
<td>140-260</td>
<td>0.2-0.4</td>
<td>2.8-11.0</td>
<td>1-3</td>
<td>25</td>
<td>13</td>
</tr>
</tbody>
</table>

– no data.

Nutrition and growth in *Clarias* species

![Graphs showing growth rate and feed conversion](image)

Figure 1. — Relationship of body weight of *C. gariepinus* (curve), *C. isheriensis* (1), *C. batrachus* (2) and *C. fuscus* (3) with specific growth rate (a) and feed conversion. (b) — Data from table 3.

*et al., 1987a; Wedekind, 1991.* They also have a better feed conversion, a lower fat and energy deposition and a higher gutted weight than females (96% vs. 93%) (Henken *et al.*, 1987a).

Triploidy in *C. gariepinus* offers no advantages in terms of growth rate or feed conversion, although diploids have a higher gutted weight (because of smaller gonads) and deposit more fat and less protein (Henken *et al.*, 1987b). Similar results were obtained with *C. batrachus* (Rustidja *et al.*, 1993). The decision to culture triploids should therefore be based on expected advantages concerning body composition and gutted weight.

To benefit from possible hybrid vigor and sterility or monosexuality enhancing growth and feed utilization, hybrids of *Clarias* species have been studied. Legendre *et al.* (1992) compared *C. gariepinus* and *Heterobranchus longifilis* with their reciprocal hybrids. *C. gariepinus* had lower growth rates and a younger age at maturity (1.7% and 5-6 months) than *H. longifilis* (1.9% and 10 months) or either cross (1.9% and 1.8%; both 10 months). These results indicate that hybridization has potential for increasing growth performance.

For genetic selection programs to focus on, growth performance and late maturation are obvious characteristics, although the latter may be less relevant for *C. gariepinus* in the Netherlands, where market weight in commercial culture (800-900 g; Verreth and Eding, 1983) is usually reached before gonads have fully developed. Variation in the desired trait has to be demonstrated for selection to give results. Prinsloo *et al.* (1988) showed slightly superior growth of a black strain over that of a red strain of *C. gariepinus*. Wedekind (1991) demonstrated differences regarding growth and body composition between strains of *C. gariepinus*. Also findings of Grobler *et al.* (1992) suggest feasibility of genetic selection for growth in *C. gariepinus*.

Selection for rapid growth as such may have disadvantages, since the level of aggression in fish may concurrently increase (Ruzzante, 1994). Furthermore, growth is a complex phenomenon and the process to address in order to improve growth, should be identified. *C. gariepinus* utilizes feed nutrients at maximum biochemical efficiency (Machiels and Henken, 1986; see above), rendering selection for higher feed utilization efficiencies redundant. Rather, selection should focus on e.g. lower maintenance requirements (Machiels and Henken, 1986) or increasing the ability to metabolize glucose (Machiels and Van Dam, 1987).

**CONCLUSION**

The superior performance of *C. gariepinus* compared to other *Clarias* species in terms of growth rate and feed has probably contributed to fact that *C. gariepinus* has been widely introduced to areas outside its natural range (Verreth *et al.*, 1993). Since *C. gariepinus* appears to operate at maximum biochemical efficiencies (Machiels and Henken, 1986), environmental factors influence growth through maintenance requirements and maximum feed intake and metabolizability. To further improve performance of *C. gariepinus* maintenance requirements could be lowered, through selection or through improvement of husbandry systems (e.g. reduction of stress or improvement of water quality). Maximum feed intake could be addressed, e.g. by fine tuning feed composition to age or size of the fish, since body composition regulates feed intake (Machiels and Henken, 1987; Machiels and Van Dam, 1987) and body composition changes with age/size (Hogendoorn, 1983).

Monosex culture or triploidy does not seem to hold much future, unless composition of meat and dressing percentages are considered important criteria (Henken *et al.*, 1987a,b; Rustidja *et al.*, 1993). In contrast, hybridization of *Clarias* species has potential (e.g. Legendre *et al.*, 1992).

Selection programs seem to be still in the phase of assessing phenotypic diversity and genetic variation (e.g. Grobler *et al.*, 1992) but may hold great future if feasible traits are selected for in homozygous individuals from which isogenic strains are established. To this
end, genome manipulation techniques (androgenesis, gynogenesis) currently under investigation in our laboratory will facilitate production of homozygous individuals, from which superior specimens can be cross bred to yield isogenic strains with better performance characteristics.

REFERENCES


Nutrition and growth in *Clarias* species


